《“人工化学家”结合人工智能、机器人技术进行自主研发》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2020-06-08
  • 来自北卡罗莱纳州立大学和布法罗大学的研究人员开发了一项名为“人工化学家”的技术,该技术结合了人工智能(AI)和执行化学反应的自动化系统,以加速研发和生产商业所需材料。

    在概念验证实验中,研究人员证明,人工化学家可以在15分钟或更少的时间内识别并生成任何颜色的可能的最佳量子点。量子点是胶体半导体纳米晶体,用于LED显示屏等应用。

    然而,研究人员很快指出,人工化学家可以识别出满足任何可测量属性的最佳材料——而不仅仅是量子点。

    “人工化学家是一个真正自主的系统,可以智能地在化学宇宙中导航,”米拉德·阿博尔哈萨尼说,他是一篇关于这项工作的论文的通讯作者,也是北卡罗来纳州化学和生物分子工程学的助理教授。目前,人工化学是为溶液处理材料设计的,这意味着它适用于那些可以使用液体化学前体制造的材料。溶液处理材料包括量子点、金属/金属氧化物纳米颗粒、金属有机骨架(MOFs)等高价值材料。

    “人工化学家类似于自动驾驶汽车,但自动驾驶汽车至少有有限的路线可供选择,以便到达预先选定的目的地。对于人工化学家,你给它一组所需的参数,这些参数是你希望最终材料具有的属性。人工化学家必须弄清楚其他的一切,比如化学前体是什么以及合成路线是什么,同时尽量减少这些化学前体的消耗。

    “最终的结果是一种完全自主的材料开发技术,它不仅能帮助你比目前使用的任何技术更快地找到理想的解决方案处理过的材料,而且还能使用少量的化学前体。”这大大减少了浪费,也大大降低了材料开发过程的成本。”

    这位人工化学家不仅有一个执行实验并感知实验结果的“身体”,还有一个记录数据并利用它来决定下一个实验是什么的“大脑”。

    为了进行概念验证测试,Artificial Chemist的身体整合了Abolhasani实验室开发的自动化纳米晶体工厂和纳米流体合成平台。人工化学家平台已经证明它每天可以运行500个量子点合成实验,尽管Abolhasani估计它可以运行1000个。

    人工化学家的大脑是一个人工智能程序,它描述身体正在合成的材料,并利用这些数据对下一组实验条件做出自主决定。它的决定是基于它所决定的将最有效地使它朝着具有期望性能和性能指标的最佳材料组成的方向前进。

    “我们试图模仿人类做决定的过程,但更有效率,”Abolhasani说。

    例如,人工化学家允许“知识转移”,这意味着它存储从它收到的每个请求生成的数据,加快识别下一个候选材料的过程。换句话说,随着时间的推移,人工化学家在识别正确的物质方面变得越来越聪明和快速。

    为了证明他们的概念,研究人员测试了人工智能如何使用数据来决定下一个实验是什么。然后,他们进行了一系列的请求,每次都要求人工化学家识别出最适合三个不同输出参数的量子点材料。

    “我们发现了一种政策,即使没有先验知识,也能在25个实验或大约一个半小时内识别出最好的量子点,”Abolhasani说。但一旦人工化学家有了先验知识——这意味着它已经处理了一个或多个目标材料请求——它就能在10到15分钟内确定具有新特性的最佳材料。

    “我们发现,人工化学家还可以快速识别给定一组起始化学前体的材料性质边界,这样化学家和材料科学家就不需要浪费时间探索不同的合成条件。

    “我相信由人工化学家实现的自主材料研发可以重塑材料开发和制造的未来,”Abolhasani说。“我现在正在寻找合作伙伴,帮助我们将这项技术从实验室转移到工业部门。”

相关报告
  • 《人工智能和机器人技术的使用案例》

    • 来源专题:装备制造监测服务
    • 编译者:zhangmin
    • 发布时间:2021-02-03
    • 人工智能和机器人技术正在给科技领域带来巨大的变化。人们在20年前的梦想现在已经变成了现实。从制造厂的自动化系统到餐馆里的自助机器人,科技不断发展,推动人类文明的进步。   在当今世界,人工智能和机器人作为问题解决者、伙伴和响应者为人类提供服务。如今,当人们与某家网站上的在线助理聊天时,通常以为是与客服交流,实际上却与聊天机器人聊天。人工智能技术已经取得了长足的进步,但不会止步于此。   人工智能和机器人技术正在多个领域得到应用   当人们谈论人工智能和机器人技术时,其实并不特定用于某个行业。它们得到几乎所有行业和部门的青睐,例如国防、医疗保健、汽车、健身、教育、零售、制造业、游戏等。   可以肯定地说,人工智能机器和计算机将会积极管理大部分交易。这只是一个开始。人工智能、机器学习、机器人技术必将在未来几年中得到进一步发展。数据在这些系统的开发中起着至关重要的作用,因为数据使这些机器能够自行学习。以下讨论一下人工智能和机器人技术的应用以及它们如何塑造人类的未来。   人工智能和机器人如今在哪里使用?   人工智能和机器人是自动化任务的强大组合。近年来,人工智能已广泛应用在机器人解决方案中,为以前的应用带来了学习能力和灵活性。尽管这两种技术还处于起步阶段,但二者结合使用时效果很好。   1. 虚拟助手和聊天机器人   虚拟助手和聊天机器人以其惊人的自动化水平推动着世界的发展和进步,并降低成本、提高生产力。虚拟助手是人工智能和机器学习的一种表现形式,通过模拟与人的对话。虚拟助理和聊天机器人被设计成使用自然语言处理(NLP)的功能来遵守自动规则。最近的技术进步显着提高了它们的性能,Siri、Google Assistant、Alexa都是虚拟助手的典型产品。   从回答诸如时间和天气之类的基本问题,虚拟助手将逐渐成为人们的得力助手。更好的是,它们可以与家中的家用电器设施完美融合。采用物联网技术,人们可以命令虚拟助手打开房屋中的灯具、空调、电视等电器。   2.农业机械   机器人技术和人工智能是农业可持续发展未来的最佳选择。几个世纪以来,由于环境污染、过度耕作、劳动力短缺以及人口增长,粮食供应链面临危机,它正威胁着人们最基本的生活需求。人工智能和自动化可以减轻农业劳动力老龄化的影响。有了自主无人机、自动驾驶农业机械等,农民可以花更多的时间专注于创造可持续的农业收成。   Deere公司是一家着名的农业设备制造商,因其自动驾驶机械而广受欢迎。此外,它还通过引进自动杂草喷洒器扩大了其农业服务范围。该公司利用先进的机器人技术、机器学习和计算机视觉来区分农作物和杂草以进行清除。此外,大数据正在帮助农民种植出更好的作物。大数据催生了处方农业,它使用基于网络的工具来创建地图或处方,告诉农民在某些作物和地区需要施用多少肥料。   3. 自主飞行   自主飞行器使用计算机视觉技术在空中盘旋,同时避开障碍物快速移动。随着人工智能的引入,这些飞行器变得越来越智能。从鸟瞰图监视到安全监视、录像、救援任务等功能,无人机正在革新并取代许多工作岗位。计算机视觉在自动飞行中的应用包括障碍物检测、避免碰撞、自我导航,以及目标跟踪。   机器学习可以给自动驾驶飞行器的工作方式带来巨大的变化。在无人机捕捉实时数据的同时,还使用了机载智能系统,使其能够根据实时数据自己做出决策。   这些无人机可用于城市管理和智能城市,用于高级监视、快速面部识别或跟踪目标。它们对农业也非常有益,因为它们可以监测作物,检查土壤肥力,评估土壤成分,并帮助农作物生产。其他应用可能包括:   扫描或绘制房地产中建筑物的地形; 军事侦察或与敌人作战; 用于人员跟踪和面部识别。   4. 零售、购物和时尚   零售业近年来已经从人工智能和机器学习中获益。人工智能正在帮助零售商通过数据分析更好地了解他们的目标市场。因为数据是数字世界的新货币,它可以决定业务成败。而零售商正在使用预测分析来帮助根据销售数据预测客户行为。电子商务网站正在使用基于客户的区域搜索趋势、位置和搜索历史记录的建议。此外,像亚马逊公司根据过去的销售数据为顾客提供产品推荐。   人工智能还帮助零售商通过定制发送给潜在客户的信息来增强他们的在线商店。内容生成是一个乏味的过程,但是通过人工智能的自然语言生成(NLG),零售商可以向客户发送有针对性的信息和报价。   机器人已经被引入管理库存和销售区域,从而提供更精确的精度并削减成本。而在时尚领域,人工智能应用在供应链和时尚商店。从服装的分类到缝纫衣物,这些平凡而繁杂的任务都是由人工智能系统来完成的,并具有更高的精度和更快的速度。机器人可以轻松精确地缝合,还可以检测织物材料中的缺陷,从而确保质量。   5. 安全与监视   如今的机器人使用人工智能、远程传感器,高清摄像头以及快速的计算机处理程序满足不同需求,并提供了功能完善的安全系统。专家认为,机器人可以轻松地保护指定区域,它们可以使用地图软件来创建地理围栏。   这些机器人可以用来监视地面和建筑物内部情况。它们经过智能设计,使用GPS系统,可以轻松找到几厘米范围内的物体。所以当移动时知道自己的方位。他们可以每天用安全摄像头记录和存储数据。采用人工智能的安全系统是一个以高清摄像机为基础的自我监控系统。   最新的人工智能动力安全机器人使用面部识别技术来识别进入建筑物的人员的身份,并创建一个目录,其中包含定期访问者或熟人。   6. 体育分析与活动   人工智能和机器人如今也应用在体育行业,以使体育比赛更精彩、更公平。体育活动对于某些人来说是一种情感所系,更重要的是价值数百亿美元的产业。全球的体育组织和协会都在尽最大努力获得竞争优势,并使用机器人技术和人工智能让体育爱好者有着更好的体验。   人工智能可以帮助运动员提高体能,发现队员的天赋。一些体育项目已经采用机器人裁判,而智能机器人可以帮助观众在体育场找到座位。对于那些不想到体育活动现场的人来说,采用VR耳机可以获得这样的体验,人工智能也在帮助俱乐部和团队根据之前的数据制定策略。   以下是体育产业采用的一些人工智能技术和措施:   智能应用程序和虚拟现实技术正在推动体育爱好者的参与度; 机器裁判很快将成为现实; 智能算法正在开发新游戏; 人工智能正在帮助团队管理和支持人员寻找新的明星球员; 人工智能正在协助俱乐部和球队保护其球员的健康。   7. 制造与生产   随着机器人技术和人工智能的实施,可以看到制造业和生产行业的发展。在制造业中引入人工智能技术的主要原因是弥补劳动力不足,简化整个生产过程并提高效率。在以往,制造商需要花很多精力来管理任务系统。自从机器人接管以来,可以提高工作效率。   人工智能通过使产品决策更迅速、更智能来帮助制造行业。这是一个定制产品的时代,人工智能正在帮助制造商收集有用的客户数据,这些数据用于做出基于产品的决策。此外,它还帮助制造工厂降低整体生产成本。人工智能和机器人技术是制造业的未来。为了更好地了解机器人技术和人工智能在制造业中的重要性,可以了解它们的用例:   基于需求的生产; 自动控制; 损害控制和快速维护; 产品设计和重新设计。   8. 游戏   机器人技术和人工智能影响了计算机游戏的设计和玩法。人工智能正在帮助游戏开发人员创造新角色,并模仿人类的行为。人工智能在游戏中的主要作用是收集和处理从玩家那里获得的数据。最重要的是,它使游戏开发者能够根据他们的需求和期望来创建游戏。   人工智能算法的适应性和学习性允许创建真实自然的游戏环境。   最后但并非最不重要的一点是,基于人工智能的游戏具有出色的图形展现。在以往,通常需要由数百名开发人员组成的团队来创建出色的图形,但是采用人工智能,其整个过程实现自动化,这节省了大量时间、资金和资源。   结论   人工智能和机器人技术是未来的驱动力。在接下来的十年中,人们将会看到基于人工智能惊人的技术发展。人工智能是关于数据的,一旦正确实施,人工智能将使用给定的数据使人们受益,从而使大多数流程自动化,并使人们的工作和生活更轻松。
  • 《人工智能帮助新药研发》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-12-03
    • 在古代,神农尝百草,这其实就是人工筛选药物的过程。 在现代,看过电影《我不是药神》的人也会知道,新药研发的成本是极高的。 在综艺节目《奇葩说》中,经济学家薛兆丰提到:每一款新药研发的周期大约是20年,平均每款新药的研发费用高达20亿美元。 所以,新药研发是一个高风险高回报的行业。 人工智能时代,情况有了很大的变化,人工智能可以对新药研发有很大的帮助。 药的分类 要理解人工智能对新药研发的帮助,首先需要对药物做一个大致的分类。从药物分子的大小来分,一般可以把药物分为二类。 1. 化学药 化学药的起效成分是单一、明确的化学小分子,分子量通常小于 1000 道尔顿(也就是1000个质子质量)。这种药可以通过实验室化学合成制备,其分子结构可以用紫外可见分光光度计,核磁共振与红外光谱仪等仪器鉴定。这种药物分子可以直接进入细胞产生药效。 著名的阿司匹林(aspirin)就是一种化学药,阿司匹林于1899年3月由德国化学家发明,可用于治疗感冒、发热、头痛等病症。再比如伟哥(viagra)是由美国辉瑞研制开发的一种口服治疗男性性功能障碍的药物,在音乐人李宗盛等人演唱的《最近比较烦》这首歌中,有这样一句“我梦见和饭岛爱一起晚餐, 梦中的餐厅灯光太昏暗, 我遍寻不着那蓝色的小药丸”,这个蓝色的小药丸就是伟哥 ,这也是一种化学药。 2. 生物药 生物药一般是抗体、蛋白(多肽)、核酸类药物,分子量通常远大于1000 道尔顿。所以生物药是大分子药。 比如治疗糖尿病的人工胰岛素就是一种生物药。1958年,中国科学院在王应睐、曹天钦、邹承鲁、钮经义、沈昭文等先生的带领下,正式启动人工合成胰岛素项目,1966年取得巨大成功。我国人工合成的胰岛素其实就是一种人工合成的蛋白质分子,这是一种生物药。 对于人工智能新药研发来说,多数情况下比较适合处理化学药,对于大分子生物药的研发,目前的人工智能技术还有点力不从心。 新药研发与药物靶点 要理解新药研发,我们还要看一下为什么一个人会生病——因为药物是用来治病的。从分子生物学的角度来说,有的病情是由于分子的表达缺失引起的,比如胰岛素降低引起糖尿病;也有的病情是因为分子的表达过强引起的,比如组胺过高引起过敏。 那么,人为什么会生病呢?因为身体是由细胞组成的,细胞是由化学小分子和生物大分子共同组成,它们并不是简单地拼凑在一起,而是相互级联作用构成一个复杂庞大的网络,不同的生理功能可以看成这个巨大网络中一条条串联的线路。 我们身体的疾病,除了外科损伤之外,多数是这个网络上某个线路发生了异常,这就好像某条交通线发生了堵塞一样。吃药的目的就是打开这个拥堵点。这个拥堵点也就是药物分子需要作用的“靶点”。 在分子生物学出现之前,没有药物靶点这个概念。在那个时候,无论是全球各地的草药,还是偶然发现的青霉素,都是根据经验、猜测或者迷信来揣度人体的发病原因。中药就是其中一个例子,一般中药有副作用,这就是因为中药不是根据分子生物学设计出来的,所以它的靶点很散乱,相当于是用散弹枪去打靶,而现代西药则好像是用狙击枪去打靶。 因此,人体内的所有分子都可能成为潜在的靶点,这些分子有可能在细胞膜上,或者在细胞质里,有些可能在细胞核里;这些分子也可能在血液里,或者在大脑中——不同分子的特点不同。比如抗体等生物大分子只能与体液和细胞膜上的分子结合,而化学小分子则更容易穿透细胞膜甚至进入细胞核发挥作用。不同药物进入体内的方式是不同的,一个好的药物需要保证它们不要在进入体内的途中损失掉(比如被胃液的酸性腐蚀等等)。而且药物的设计必须有很好的靶向性,比如有的药需要进入大脑,那么就需要穿过血脑屏障;有的药为了不影响婴儿,则希望它不要透过母婴屏障。最好的药物设计的标准是:设计出来的药只与想治疗的器官和分子发挥作用,而不产生其他的副作用。但是,由于生物功能是一条线路,这个线路上可能不止一个分子有成为靶点的潜力,因此要找到最关键的靶点才会最有效果。但事情没有那么简单,在生物体中,同样一个分子可能是多功能的,如果抑制了这个分子,可能就会引起其他正常功能的损伤,这就是产生副作用,有些副作用还很严重,因此,要选择非常干净特异的分子作为药物靶点。 药物靶点这个概念是分子生物学发展的产物,尤其是基因测序技术发展起来之后才有的新概念。通过研究找到真正作用的原因(分子机理),可以为药物研发提供了新的原理。 人工智能帮助新药研发 人工智能是需要有大数据作为原料的,而新药研发领域其实是一个大数据非常丰富的宝库,因此这为人工智能提供了用武之地。比如1959年《药物化学》杂志创刊至今,至少发表了45万种化合物作为药物的研究对象,这是一个巨大的数据库,对于这样的大数据,人工智能可以发挥它的独特作用。 不久前,《科学美国人》与世界经济论坛发布了2018年十大新兴技术,人工智能辅助化学分子设计——机器学习算法加速新药研发就是其中之一。 目前,在全球有至少100家企业正在探索新药研发的人工智能方法,在国外,葛兰素史克、默克、强生与赛诺菲公司都已经布局人工智能新药研发。在中国,也涌现了深度智耀、零氪科技与晶泰科技等人工智能新药研发企业,药明康德也战略投资了美国的一家人工智能新药研发公司。 对于化学分子的设计而言,以前的设计是通过人员对分子各种侧链和基团化学性质的经验,人工设计药物。这个过程就跟程序员写程序一样,有的人有天分,写一个程序就能成功运行,有的人没天分,设计了许多也没有好用的。因此,在当时就有很多人说,药物的化学设计是一种艺术,甚至是一种玄学。 现在,则可以用机器来学习药物和药物靶点的结合特点,从而让机器来进行药物设计,这也能大大提高成功设计的概率。人工智能通过计算机模拟,可以对药物活性、安全性和副作用进行预测。 人工智能可以应用在药物开发的不同环节,包括虚拟筛选苗头化合物、新药合成路线设计、药物有效性及安全性预测、药物分子设计等。为什么人工智能提高新药研发的效率呢?因为人工智能有很强大的发现关系的能力,还有很强大的计算能力。在发现关系方面,人工智能可以发现药物与疾病的连接关系,也能发现疾病与基因的连接关系。在计算能力方面,人工智能可以对候选的化合物进行筛选,更快筛选出具有较高活性的化合物,为后期临床实验做准备。人工智能在化合物合成与筛选方面可以比传统手段阶段40%的时间,每年为药企节约上百亿的筛选化合物的成本。 人工智能技术的出现,为中国在新药研发的国际竞争中实现弯道超车提供了一定的可能性。