《采矿硬件可帮助科学家深入了解硅纳米粒子》

  • 来源专题:集成电路
  • 编译者: Lightfeng
  • 发布时间:2018-03-05
  • 研究人员首先建立了光与纳米颗粒相互作用的三维动力学模型。他们用一台超级计算机用图形加速器计算。结果表明,在短时间强激光脉冲作用下,硅粒子暂时失去对称性。它们的光学性质变得非常不均匀。这种性质的变化取决于颗粒大小,因此它可以用于超快速信息处理纳米级器件的光控制。该研究发表在先进的光学材料上。

    当今对计算设备的改进需要进一步加速信息处理。纳米光子学是可以通过光学器件解决这个问题的学科之一。尽管光信号的传输和处理速度比电子信号快得多,但首先,需要学习如何在小范围内快速控制光线。为此,可以使用金属颗粒。他们有效地定位光线,但是最终导致重大损失。然而,可以使用电介质和半导体材料(例如硅)代替金属。

相关报告
  • 《利用生物纳米粒子携带技术可以提高杀虫剂的效率》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:李楠
    • 发布时间:2017-11-28
    • 寄生型线虫以土壤深处的植物根部为食,破坏植物根部,从而大大削弱植物吸收水和养分的能力。线虫可侵食各种农作物,包括玉米、小麦、咖啡、大豆、马铃薯、以及各种果树,每年全球因线虫病造成的农作物损失高达1,570亿美元。传统的杀虫剂无法抵达植物根部,并且杀虫剂在土壤中的散布效果很差。另外,农田施用大量化学杀虫剂,可能增加食品中化合物浓度以及化学制剂溢流量,而且会损害其他环境要素。 为了有效降低寄生型线虫对于农作物的影响,美国凯斯西储大学(Case Western Reserve University)的研究人员将药物输送技术应用到农业领域。他们利用生物纳米粒子——烟草轻绿花叶病毒纳米粒子(Virus Nanoparticle),携带线虫杀剂于土壤表面,使线虫杀虫剂抵达作物根部。纳米粒子的使用提高了药物在土壤中的扩散效率,降低了药物被过滤和溢流的风险,减少了农产品和谷物中的化学制剂残留量、降低了农作物病虫害防治的成本。该研究论文发表在美国化学会的期刊《纳米》(Nano)上。 凯斯西储大学生物医药工程专业的博士研究生保罗·查理奥(Paul Chariou)与凯斯西储大学医药系生物材料学教授尼古拉·斯泰因梅兹(Nicole Steinmetz)一起合作。查理奥表示:“烟草轻绿花叶病毒(TMGMV)会自动聚集成一个300 nm长、18 nm宽的管状结构,中间有一个4纳米宽的中空管道。这种病毒可感染番茄、茄子和其他茄属植物,但是对近3 000种其他可感染线虫病的植物不构成威胁。因此,这种植物病毒纳米粒子的特性为提高化学杀虫剂的作用奠定了基础。 在实验室条件下,研究人员利用一种叫作结晶紫(Crystal Violet)的线虫杀剂,对这种植物病毒形成的纳米粒子的作用过程进行了测试。结晶紫一直被用来杀死皮肤上的线虫,但还未在农业领域使用过。研究人员利用表面化学(Surface Chemistry)将带正电的结晶紫分子装入带负电的病毒纳米分子管道中,每个病毒粒子携带约1,500个结晶紫分子,在实验室环境中模拟pH值为5的作物土壤。施放病毒粒子以及病毒粒子在土壤中扩散的过程中,线虫杀剂一直未脱落。到了作物根部,线虫杀剂逐渐从病毒粒子中扩散开来。查理奥表示,“温度越高、酸碱度更低的土壤会使这种化学制剂施放得更快。”另外,研究人员还注意到,水晶紫在线虫肚内被释放,并杀死线虫。 为了进一步验证该纳米颗粒的杀虫效果,科学家利用培养液中的秀丽隐杆线虫(Caenorhabdiiselegans)进行实验。最终实验结果显示,注入药物的病毒纳米粒子药物随着时间推移从其载体中扩散开来,并与线虫接触,最终线虫被杀死。更重要的是,在施于土壤表面时,携带线虫杀剂的病毒粒子,其散布效果更佳,更多的杀剂分子可用来在植物根部杀死线虫。 目前,查理奥和斯泰因梅兹使用经批准用于农作物的化学杀虫剂对这一投放系统进行测试,并建立电脑模型以便更好地了解纳米粒子在土壤中的扩散能力,并最终对其进行优化。 (编译 李楠)
  • 《NIST科学家研究证实,细胞的电场阻止了纳米颗粒的进入》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-03-01
    • 包裹我们细胞的不起眼的细胞膜有一个惊人的超能力:它们可以推开碰巧靠近它们的纳米级分子。一个由美国国家标准与技术研究院(NIST)的科学家组成的研究小组通过使用模仿天然膜行为的人造膜找出了原因。他们的发现可能会对我们如何设计针对我们细胞的许多药物治疗产生影响。 该研究小组的发现发表在《Journal of the American Chemical Society》上,证实了细胞膜产生的强大电场在很大程度上是将纳米级颗粒从细胞表面排斥的原因。这种斥力明显影响中性的、不带电的纳米粒子,部分原因是电场吸引的小的、带电的分子挤在膜上,把大的粒子推开。由于许多药物治疗都是围绕靶向膜的蛋白质和其他纳米级颗粒构建的,因此排斥力可能在治疗的有效性中发挥作用。 这一发现首次提供了直接证据,证明电场是产生斥力的原因。根据NIST的David Hoogerheide的说法,这种影响应该得到科学界的更多关注。 “这种排斥,以及小分子施加的相关拥挤,可能在具有弱电荷的分子如何与生物膜和其他带电表面相互作用方面发挥重要作用,”Hoogerheide说,他是NIST中子研究中心(NCNR)的物理学家,也是该论文的作者之一。“这对药物设计和输送,以及纳米尺度拥挤环境中粒子的行为都有影响。” 在几乎所有种类的细胞中,细胞膜都形成边界。细胞不仅有一层外膜,它包含并保护内部,而且内部通常还有其他膜,形成细胞器的一部分,如线粒体和高尔基体。了解细胞膜对医学科学很重要,尤其是因为细胞膜上的蛋白质经常是药物的靶标。一些膜蛋白就像门一样调节进出细胞的物质。 这些膜附近的区域可能是一个繁忙的地方。成千上万种不同的分子相互挤在一起,挤在细胞膜上——任何试图穿过人群的人都知道,这是很困难的。像盐这样的小分子相对容易移动,因为它们可以适应更紧密的点,但像蛋白质这样的大分子在移动上受到限制。 Hoogerheide说,这种分子拥挤已经成为一个非常活跃的科学研究课题,因为它在细胞的功能中起着现实世界的作用。细胞的行为取决于细胞“汤”中成分的微妙相互作用。现在看来,细胞膜可能也有作用,它根据大小和电荷对自己附近的分子进行分类。 “拥挤如何影响细胞及其行为?”他说。“例如,这个汤中的分子是如何在细胞内分类的,使其中一些分子具有生物功能,而另一些分子则不能?”膜的作用可能会有所不同。” 虽然研究人员通常使用电场来移动和分离分子——一种被称为电介质电泳的技术——但科学家们很少关注纳米级的这种效应,因为移动纳米粒子需要非常强大的电场。但强大的磁场正是带电膜所产生的。 Hoogerheide说:“在我们身体产生的含盐溶液中,靠近膜的电场可能会非常强大。”“它的强度随着距离的增加而迅速下降,产生了较大的场梯度,我们认为这可能会排斥附近的粒子。所以我们用中子束来研究它。” 中子可以区分氢的不同同位素,研究小组设计了实验,探索了膜对附近聚乙二醇分子的影响,聚乙二醇是一种形成无电荷纳米粒子的聚合物。氢是聚乙二醇的主要成分,通过将膜和聚乙二醇浸泡在重水溶液中——重水是用氘代替普通水的氢原子——研究小组可以测量聚乙二醇粒子与膜的接近程度。他们在核反应堆和橡树岭国家实验室使用了一种被称为中子反射计的技术。 结合分子动力学模拟,实验首次揭示了膜强大的场梯度是排斥背后的罪魁祸首:PEG分子在带电表面的排斥比在中性表面的排斥更强烈。 Hoogerheide说,虽然这些发现并没有揭示任何根本性的新物理学,但它们确实在一个意想不到的地方展示了众所周知的物理学,这应该鼓励科学家们注意并进一步探索它。 他说:“我们需要把这一点添加到我们对纳米尺度上事物如何相互作用的理解中。”“我们已经证明了这种互动的力量和意义。现在我们需要调查它是如何影响这些拥挤的环境的,那里发生了如此多的生物活动。”