《不同植物种花分生组织识别基因APETALA2(AP2)密码子的比较分析》

  • 来源专题:转基因生物新品种培育
  • 编译者: zhangyi8606
  • 发布时间:2018-10-09
  • 花分生组织识别基因APETALA2(AP2)是A类基因之一,参与花分生组织的建立和萼片、花瓣的形成。密码子使用偏倚(CUB)可以识别物种间的差异,而碱基组成的动态分析可以识别特定基因的分子机制和进化关系。本研究利用GenBank数据库,从不同植物物种中筛选出八个AP2基因编码序列(CDS)。利用R软件计算了它们的核苷酸组成(GC含量)、遗传指数、相对同义密码子使用率(RSCU)和相对密码子使用偏倚(RCUB),比较了不同植物物种AP2基因密码子使用模式的密码子偏倚和碱基组成动态。结果表明,不同植物物种AP2基因密码子的使用受GC偏向的影响,尤其是GC3s。总的来说,碱基组成分析表明,不同植物AP2基因CDS中AT密码子在基因编码序列中的使用频率高于GC。此外,大多数AP2基因CDS以AT结束;AGA、GCU和UGU作为最主要密码子具有较高的RSCU值;苹果AP2基因密码子的使用特性与葡萄相似;白芍与牡丹相似;番茄与矮牵牛相似。不同植物物种对AP2基因密码子的使用有适度的偏好,从相对低的最佳密码子频率(Fop)值和较高的有效密码子数(ENC)值。本研究通过比较不同植物物种AP2基因密码子偏好性和碱基动力学,揭示了AP2基因密码子的使用特点,为进一步研究转基因工程和密码子优化提供了平台。

相关报告
  • 《转基因与基因编辑植物的比较》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2018-12-26
    • 人们很容易看到大量高档餐厅和杂货店推销非转基因生物产品,并得出结论,食用转基因生物对你的健康有害。反转基因运动有效地激起了人们的恐惧和忧虑,其经常援引令人怀疑的“科学”理论,并遵循“预防原则”,就是说即使没有可信的科学理由来避免转基因食品,它们仍然应该被避免,因为未来某个时候可能会发现其缺点。这个组织严密、资金充足的反转基因运动有效地淹没了支持转基因组织的论点,包括对农业可持续性的重大全面改善。 一些反对转基因运动的人士认为,有必要对某些育种技术(包括基因编辑)进行更多的审查和监管。欧盟最近裁定,基因编辑作物在监管方面应该像转基因生物一样对待,这引起了更大的混乱。 欧盟的这项裁决要求使用CRISPR和其他基因编辑工具创建的植物与转基因生物相同,并受到同样严格的规定。但是,该裁决也有一个例外,不包括使用具有长期安全记录的常规诱变技术开发的植物。 这项裁决令人头疼,迫切需要理解所涉及的科学。那么,什么是基因编辑?它与转基因或转基因作物有什么不同吗?如果基因编辑的作物无法与传统植物育种培育的作物区分开来,那它们又如何被调控呢? 基因编辑和创造转基因生物是有区别的。理解这种区别对于做出对消费者和投资者以及对全球粮食供应的未来有利的选择至关重要。从对诱变作用的更好理解开始。 突变作为鉴定优良植物品种的历史手段 事实是:只要我们吃植物,我们人类就食用转基因食品。 自发突变-DNA中的变化或突变-总是自然发生的。这是由于自然辐射,如紫外线或宇宙射线,化学反应,或DNA复制错误。当DNA的这种化学变化发生在植物编码重要信息的基因组的一部分时,这种变化通常是有害的。但有时,这种改变是有益的,并且由此产生的突变植物比其亲本更好。 人类已经选择改良的突变植物至少9000年了。包括玉米、西瓜和桃子在内的现代作物与它们的野生祖先有着根本的不同,这是人类长期选择优质作物进行植物育种的结果。早期的农民会选择具有有利突变的作物系,如更大的谷物、更美味的水果,或其他理想的特性(比如,一种大葫芦可用作容器)。年复一年,最好的植物种子被保存和重新种植。农民们总是在寻找好种子,就像今天一样。经过多代人的杂交育种农民创造了遗传改良和更强壮、产量更高的作物。从本质上讲,几千年来,农民一直在对作物进行基因改造,至少是通过选择突变体和仔细杂交不同品种。 这些传统的方法今天仍在使用。此外,近90年来,植物育种家采用了新的方法来提高产生突变的效率,目的是选择改良的品种。从1930年左右开始,包括X射线、伽马射线、紫外线和中子在内的各种辐射被用于“诱变”植物种群,以产生高频率的诱变植物突变体,育种者可以从中选择。从20世纪40年代开始,芥子气和类似的化合物被用作另一种产生突变体的方法。甚至在今天,化学物质如甲烷磺酸乙酯(EMS)和类似的化合物通常被用来产生突变体植物群体。这些方法是有用的——2004年发表的一篇高被引文章估计,来自诱变群体的2250多种植物品种已经公开。 “自发”或“诱导”植物突变的一个关键方面是突变的过程是随机的。现在,有一些为植物引入变异的方法不是随机的,而是高度计划的。 这些是精密的基因编辑工具,如CRISPR/Cas9、归巢核酸内切酶(“巨核酸酶”)、寡核苷酸定向诱变和锌指核酸酶,它们都可以用来产生突变,这些突变与自发或诱导群体所鉴定的突变无法区分。 引导理想的突变 我们正在基因组测序和分析技术上经历着快速的进步,价格急剧下降,能力也逐年增加。这意味着植物科学家和育种家能够识别出关键需要的突变,而这些新的基因编辑工具能够对植物品种进行精确的编辑。相对于开发突变体品种和将多个期望的突变组合成同一植物品种所需的传统植物育种步骤,这在时间和资源上具有很大的优势。利用该技术对植物进行改良有着重大的兴趣,包括Calyxt、Precision Biosciences和Pairwise在内的公司都致力于利用基因组编辑来开发和交付改良的植物品种。 虽然这些工具中的每一个都有不同的机制,但是改变本身原则上与自发的、自然的突变是无法区分的。在最终产品中,没有异物的痕迹残留,并且编辑过的生物体的基因组基本上与以前相同。
  • 《利用薯蓣属植物分析繁育系统演变的遗传效应》

    • 编译者:季雪婧
    • 发布时间:2024-10-28
    •     繁育系统是高等真核生物最重要的生活史特征之一,对有效种群大小、分子进化速率和遗传突变积累等群体遗传参数具有深刻影响。有性繁殖向无性繁殖的转变将对基因组进化产生多重影响。相对于有性生殖物种而言,长期依赖无性繁殖的物种可能伴随着遗传负荷上升、环境适应力下降,并最终导致种群萎缩和灭绝风险上升等后果。尽管上述理论预期在不同层面上有过试验验证,现有的结果依然无法充分解析无性生殖方式在物种间的影响差异,尤其是在不同进化时间尺度上无性生殖的负面遗传效应仍需进一步深入研究。薯蓣属(Dioscorea)植物的繁育系统形式多样,特别是兼具种子(有性)和珠芽(无性)的混合繁殖方式,是探索繁育系统多样化对基因组进化的影响提供理想材料。     中国科学院昆明植物研究所植物性系统功能与演化(周伟)专题组在前期工作(Zeng et al. 2024,?New Phytologist;Wang et al. 2021,?Molecular Biology & Evolution;Zhong et al. 2019,?New Phytologist;Zhou et al. 2017,?New Phytologist)的基础上,选用19个薯蓣属物种作为研究对象,涵盖了完全依赖种子进行有性繁殖的物种,主要通过珠芽进行无性繁殖的物种,以及同时利用种子和珠芽进行兼性繁殖的物种,基于转录组测序技术开展不同性系统间DNA序列分化与多态性比较分析(图1)。研究发现,以无性繁殖为主的物种在重组缺失的情况下,穆勒棘轮(Muller’s Ratchet)效应将显著加速近中性和中度有害突变的累积,负选择效力的下降同时导致群体层面和物种层面的遗传负荷上升(图2)。相比之下,兼性繁殖的物种在群体水平上也存在明显的遗传负荷积累,但是,在物种层面却没有检测到无性克隆所蕴含的负面效应,暗示一定配比的有性兼无性繁殖可能是一种较优的繁殖策略。薯蓣属的研究工作表明,无性繁殖产生的负面遗传效应不仅取决于繁殖方式发生及其持续的时间长度,同时也取决于物种对无性繁殖的实际依赖程度,揭示了植物繁育系统变异对基因组进化的复杂影响。     以上研究结果以Effects of mode of reproduction on genetic polymorphism and divergence in wild yams (Dioscoreaceae:?Dioscorea)为题发表在Plant Diversity。中国科学院昆明植物研究所博士研究生王鑫和已毕业硕士研究生封庆红为论文的共同第一作者,周伟研究员和王红研究员为论文共同通讯作者。中国科学院昆明植物研究所李德铢研究员、陈高研究员、蔡杰高级工程师、曾志华博士研究生,以及云南大学张志强副教授等参与了本项工作。该研究得到云南省青年人才项目、国家自然科学基金、云南省重点基础研究计划等项目的联合资助。