《光开关方法为有效收集和储存太阳能铺平了道路》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2024-10-31
  • 国际能源署 (IEA) 指出,全球最终能源消耗中约有 50% 用于供暖。然而,与化石能源相比,太阳能在该领域的利用率仍然相对较低。限制太阳能广泛使用的一个固有问题是其直接可用性的间歇性。

    一种有希望的解决方案是分子太阳能储存系统。传统的热能储存策略将能量储存在短时间内,例如以热水的形式。相比之下,分子太阳能储存系统以化学键的形式储存太阳能,使其可以保存数周甚至数月。

    这些特殊的分子(或光开关)吸收太阳能,然后根据需要将其释放为热量。然而,目前光开关面临的一个关键挑战是能量存储能力和太阳光吸收效率之间的权衡,这限制了整体性能。为了解决这个问题,约翰内斯古腾堡美因茨大学 (JGU) 和锡根大学的研究团队在一项合作研究中提出了一种新方法。

    该研究结果已发表在《应用化学国际版》上。

    分离太阳能的吸收和储存过程

    这种新型光开关最初是由锡根大学 Heiko Ihmels 教授的研究小组发明的,它表现出与传统锂离子电池相当的卓越储能潜力。然而,它们的功能最初仅限于通过紫外线激活,而紫外线仅占太阳光谱的一小部分。

    美因茨和锡根的研究团队现在引入了一种间接光收集方法,与光收集复合物在光合作用中的作用类似。这种方法结合了第二种化合物,即所谓的敏化剂,它表现出优异的可见光吸收特性。

    詹姆斯·古尔顿大学化学系的 Christoph Kerzig 教授解释说:“在这种方法中,敏化剂吸收光,随后将能量传输到光开关,而光开关在这些条件下无法直接被激发。”

    这一新策略将太阳能存储效率提高了一个数量级以上,代表着能源转换研究界向前迈出了一大步。这些系统的潜在应用范围从家庭供暖解决方案到大规模能源存储,为可持续能源管理提供了一条有希望的道路。

  • 原文来源:https://www.nengyuanjie.net/article/101589.html
相关报告
  • 《Discovery为新一代太阳能电池铺平了道路》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-07-29
    • 由KU Leuven首次领导的一项研究首次解释了一种有前景的钙钛矿 - 人造晶体可将阳光转化为电能 - 如何得以稳定。结果,晶体变黑,使它们能够吸收太阳光。这对于能够在易于制造且高效的新太阳能电池板中使用它们是必要的。该研究发表在“科学”杂志上。 钙钛矿是具有许多应用的半导体材料。他们在收获太阳能方面表现出特别的希望目前,大多数太阳能电池由硅晶体制成,硅晶体是一种相对简单有效的材料,可用于此目的。然而,基于钙钛矿的器件提供比硅更高的转换效率。唯一的问题是:一些最有希望的钙钛矿,即三碘化铅(CsPbI3),在室温下非常不稳定。在这些条件下,它们具有黄色,因为晶体中的原子不形成钙钛矿结构。为了使晶体有效地吸收阳光并将其转化为电能,它们应该处于黑色的钙钛矿状态 - 并保持这种状态。 “硅形成一种非常坚固的刚性晶体。如果按压它,它就不会改变它的形状。另一方面,钙钛矿更柔软,更具延展性,”KU鲁汶膜中心的Julian Steele博士解释说。可持续解决方案的分离,吸附,催化和光谱学(cMACS)。 “我们可以在各种实验室条件下稳定它们,但在室温下,黑色钙钛矿原子确实需要重新洗牌,改变结构,最终将晶体变成黄色。” 斯蒂尔与国际科学家团队一起发现,通过将钙钛矿太阳能电池的薄膜粘合到一块玻璃上,细胞可以获得并保持其所需的黑色状态。将薄膜加热至330摄氏度的温度,使钙钛矿膨胀并粘附在玻璃上。加热后,将薄膜快速冷却至室温。这个过程固定晶体中的原子,限制它们的运动,使它们保持所需的黑色形状。 “有三个支柱决定了太阳能电池的质量:价格,稳定性和性能。钙钛矿在性能和价格方面得分很高,但它们的稳定性仍然是一个主要问题,”斯蒂尔说。几年来,科学家们已经观察到钙钛矿可以在加热后保持黑度,但目前还不清楚为什么。 “在我们的研究中,我们选择了CsPbI3,因为它的性能非常高,”Steel解释道。 “此外,它是最不稳定的钙钛矿类型之一,这意味着它对我们描述的方法很敏感,应该转化为其他不稳定的钙钛矿。” 该研究中使用的大部分数据都是在欧洲同步辐射装置收集的。为了理解分子尺度上的实验观察,根特大学分子模拟中心(CMM)的同事通过理论模拟钙钛矿的黑色和黄色相来支持这一发现。计算结果对于合理化将黑相固定在玻璃基板上作为薄膜时的稳定性是必要的。 尽管存在假设,但如何完全结合仍然是个谜。 “通常情况下,我们会选择具有原子分辨率的显微镜并直接看一下。然而,这对于钙钛矿来说是不可能的,因为它们很难用这种高分辨率成像仪器观察,因为它们非常柔软并且容易在下面分离。普通探头能量相对较高。“ ——文章发布于2019年7月26日
  • 《过氧化物制造太阳能电池的新方法为低成本大规模生产铺平了道路》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-03-30
    • 美国洛斯阿拉莫斯国家实验室2021年3月18日在Joule杂志上发文称,一种使用硫醇添加剂的新浸渍工艺可以制造出高性能的过氧化物太阳能电池。该方法成本低廉,非常适合扩大到商业生产。 相关研究人员表示,一种新的、更简单的制造稳定的过氧化物太阳能电池的解决方案,克服了这一前景广阔的可再生能源技术大规模生产和商业化的关键瓶颈,而这一技术在过去十多年里一直遥不可及,现在研究人员的工作为在不久的将来低成本、高通量的大规模太阳能组件商业化生产铺平了道路。 研究人员能够通过两个微型模块来证明这种方法,它们达到了将太阳光转化为电能的冠军水平,并大大延长了工作寿命。由于这种工艺简单且成本低,我们相信它很容易适应工业环境中的可扩展制造。几十年来,过氧化物光伏被视为市场上熟悉的硅基光伏一个可行的竞争者,在过去十年中一直是一项备受期待的新兴技术。由于缺乏解决该领域宏大挑战的方案,商业化一直受阻,将高效率的过氧化硅太阳能电池模块的生产从工作台扩大到工厂车间。 该团队与国立台湾大学(NTU)的研究人员合作,发明了一种一步旋涂法,通过在过氧化物前体中引入磺烷作为添加剂,或通过化学反应生成过氧化物晶体的液体材料。与其他制造方法一样,然后将该晶体沉积在基底上。 新工艺使该团队能够生产出高产、大面积的光伏器件,高效地从太阳光中创造电力。这些过氧化物太阳能电池的工作寿命也很长。通过简单的浸渍方法,该团队能够在两个迷你模块中沉积出覆盖大面积有效面积的均匀、高质量的过氧化物晶体薄膜,其中一个约16平方厘米,另一个近37平方厘米。在整个光伏组件的面积上制造均匀的薄膜对器件性能至关重要。 研究人员拿出迷你模块的功率转换效率分别达到17.58%和16.06%,是目前报道的最高水平。功率转换效率是衡量太阳光转化为电能的效率。对于其他过氧化物制造方法来说,工业化规模制造的主要障碍之一是其狭窄的加工窗口,即薄膜可以在基底上铺设的时间。为了得到均匀的结晶薄膜,并与下面的层很好地结合,沉积过程必须严格控制在几秒钟内。 在过氧化物前驱体中使用磺烷可将处理窗口从9秒延长到90秒,在大面积上形成高结晶、紧凑的层,同时对处理条件的依赖性较小。磺烷法可以很容易地适应现有的工业制造技术,这有助于为商业化铺平道路。 过氧化物是任何具有与矿物过氧化物相似的特殊晶体结构材料。过氧化物可以被设计和制造成极薄的薄膜,这使得它们在太阳能光伏电池中非常有用。