《物理海洋领域ESI高被引论文》

  • 来源专题:物理海洋学知识资源中心
  • 编译者: cancan
  • 发布时间:2018-07-05
  • 1.Provost C, Sennéchael N, Miguet J, et al. Observations of flooding and snow‐ice formation in a thinner Arctic sea‐ice regime during the N‐ICE2015 campaign: Influence of basal ice melt and storms[J]. Journal of Geophysical Research, 2017, 122.

    2. Meyer A, Sundfjord A, Fer I, et al. Winter to summer oceanographic observations in the Arctic Ocean north of Svalbard[J]. Journal of Geophysical Research Oceans, 2017, 122(8).

    3. Johnson K S, Plant J N, Coletti L J, et al. Biogeochemical sensor performance in the SOCCOM profiling float array[J]. Journal of Geophysical Research, 2017, 122.

    4. Itkin P, Spreen G, Cheng B, et al. Thin ice and storms: Sea ice deformation from buoy arrays deployed during N‐ICE2015[J]. Journal of Geophysical Research Oceans, 2017, 122.

    5. Kunze E. Internal-Wave-Driven Mixing: Global Geography and Budgets[J]. Journal of Physical Oceanography, 2017, 47(6).

    7. Granskog M A, Rösel A, Dodd P A, et al. Snow contribution to first‐year and second‐year Arctic sea ice mass balance north of Svalbard[J]. Journal of Geophysical Research, 2017, 122(3).

    8. Peterson A K, Fer I, Mcphee M G, et al. Turbulent heat and momentum fluxes in the upper ocean under Arctic sea ice[J]. Journal of Geophysical Research Oceans, 2017, 122(2):n/a-n/a.

    9. Taskjelle T, Granskog M A, Pavlov A K, et al. Effects of an Arctic under‐ice bloom on solar radiant heating of the water column[J]. Journal of Geophysical Research Oceans, 2017, 122(1):126-138.

    10. Roberts C D, Palmer M D, Allan R P, et al. Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content[J]. Journal of Geophysical Research Oceans, 2016, 122(1):726–744.

    11. Constantin A, Johnson R S. An Exact, Steady, Purely Azimuthal Equatorial Flow with a Free Surface[J]. Journal of Physical Oceanography, 2016, 46(6):160125132249001.

    12. Rocha C B, Chereskin T K, Gille S T, et al. Mesoscale to Submesoscale Wavenumber Spectra in Drake Passage[J]. Journal of Physical Oceanography, 2016, 46(2):151222135934003.

    13. Saba V S, Griffies S M, Anderson W G, et al. Enhanced warming of the Northwest Atlantic Ocean under climate change[J]. Journal of Geophysical Research Oceans, 2012, 121(1):n/a-n/a.

    14. Gaube P, Chelton D B, Samelson R M, et al. Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping[J]. Journal of Physical Oceanography, 2015, 45(1):104-132.

    15. Ardhuin F, Rogers E, Babanin A V, et al. Semiempirical Dissipation Source Functions for Ocean Waves. Part I: Definition, Calibration, and Validation[J]. Journal of Physical Oceanography, 2010, 40(9):1917-1941.

    16. Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO 2, and net sea–air CO 2, flux over the global oceans[J]. Deep-Sea Research Part I, 2009, 56(11):2075-2076.

    17. Foxkemper B, Ferrari R, Hallberg R. Parameterization of Mixed Layer Eddies. Part I: Theory and Diagnosis[J]. Journal of Physical Oceanography, 2008, 38(6):1145-1165.

    18. Stammerjohn S E, Martinson D G, Smith R C, et al. Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability[J]. Journal of Geophysical Research Oceans, 2008, 113(C3):-.

    19. Capet X, Mcwilliams J C, Molemaker M J, et al. Mesoscale to Submesoscale Transition in the California Current System. Part I: Flow Structure, Eddy Flux, and Observational Tests[J]. Journal of Physical Oceanography, 2008, 38(38):44.

    20. Hobday A J, Alexander L V, Perkins S E, et al. A hierarchical approach to defining marine heatwaves[J]. Progress in Oceanography, 2016, 141:227-238.

    21. Pinardi N, Zavatarelli M, Adani M, et al. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis[J]. Progress in Oceanography, 2015, 132:318-332.

    22. Mccarthy G D, Smeed D A, Johns W E, et al. Measuring the Atlantic Meridional Overturning Circulation at 26°N[J]. Progress in Oceanography, 2015, 130(13):91-111.

    23. :Chelton, Dudley B.; Schlax, Michael G.; Samelson, Roger M.Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2):167-216

    24. Roemmich D, Gilson J. The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program[J]. Progress in Oceanography, 2009, 82(2):81-100.

    25. Small R J, Deszoeke S P, Xie S P, et al. Air–sea interaction over ocean fronts and eddies[J]. Dynamics of Atmospheres & Oceans, 2008, 45(3):274-319.

相关报告
  • 《法国海洋领域重要机构》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:mall
    • 发布时间:2017-11-16
    • 法国海洋开发研究院 http://wwz.ifremer.fr/institut_eng 国家科学研究中心(法国科学研究中心) http://www.cnrs.fr/index.php
  • 《【食品加 智食科技】河南工业大学王子朝老师课题组研究成果入选ESI高被引论文》

    • 来源专题:食品安全与健康
    • 编译者:杨娇
    • 发布时间:2025-01-13
    • 据2025年1月9日基本科学指标数据库(Essential Science Indicators,简称ESI)统计数据显示,河南工业大学生物工程学院王子朝老师课题组于2024年04月发表于食品领域Trends in Food Science & Technology(中国科学院一区,TOP期刊,IF = 15.1)上的论文“Effect of Lactobacillus fermentation on the structural feature, physicochemical property, and bioactivity of plant and fungal polysaccharides: A review”(他引14次),被ESI数据库遴选为高被引论文。 成果介绍 多糖是一种由10分子以上单糖通过糖苷键连接而成的高分子聚合物,不仅绿色安全,还具有抗肿瘤、抗癌、抗炎、免疫调节、降血糖、降血脂、抗氧化、抗辐射、抑菌等多种生物活性,在食品、医药及工农业生产等领域展现出广阔的应用前景。然而,多糖的生物活性往往较低,无法满足现实中生产生活的需求。通过对多糖进行改性以提高或者赋予多糖更加优异的理化特性和生物活性,进而提升和拓展多糖的应用,已逐渐得到学者们的关注和认可。除物理、化学、酶法等之外,微生物发酵也是一种对多糖进行改性的优良方法,并且微生物发酵具有绿色环保、效率高、易于大规模生产等特点。因此,本文选择具有益生活性的乳杆菌为对象,系统综述乳杆菌发酵对植物和真菌胞外多糖结构特征、理化特性、生物活性的影响,为多糖的微生物发酵改性以及发酵功能乳品和饮料的开发提供参考与帮助。 原文链接:https://doi.org/10.1016/j.tifs.2024.104492 近年来,河南工业大学 生物工程学院 王子朝老师课题组聚焦于新型功能活性多糖等组分的挖掘开发、生物合成、代谢调控、结构解析及推广应用,相继发表多篇高水平论文,截至目前为止,已有5篇多糖相关论文成为高被引和热点论文。