《包括UMD研究人员在内的国际研究团队发现,植物如何关闭感染关键免疫系统蛋白的大门》

  • 来源专题:动植物疫病
  • 编译者: 刘小燕
  • 发布时间:2020-11-04
  • 植物有一种特殊的能力,通过关闭它们的毛孔来保护自己不受病原体的伤害,但是直到现在,没有人知道它们是如何做到的。科学家们已经知道,大量的钙进入到毛孔周围的细胞中会促使它们关闭,但是钙如何进入细胞尚不清楚。包括马里兰大学科学家在内的国际团队进行的一项新研究表明,一种名叫OSCA1.3的蛋白质形成了一个通道,可以将钙泄漏到植物气孔周围的细胞中,他们确定了一种已知的免疫系统蛋白质会触发该过程。这一发现是理解植物抵御感染的防御机制的重要一步,最终可能导致更健康、更有抵抗力和产量更高的作物。该研究论文于2020年8月26日发表在《自然》杂志上。

相关报告
  • 《研究揭示了我们的免疫系统如何处理真菌和病毒感染》

    • 来源专题:生物安全网络监测与评估
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2020-03-10
    • 根据一项新研究首次对这两种类型的感染进行了研究,当患者也被病毒感染时,人体对真菌感染的免疫反应也会发生变化。 这项由伯明翰大学,Pirbright学院和伦敦大学学院的研究人员进行的研究为免疫系统应对共感染的能力提供了新的思路。 真菌感染是免疫力低下的患者的主要杀手,例如AIDS患者或移植受者,但它们通常与继发性病毒感染同时发生。尽管临床医生了解免疫系统如何对每种类型的病原体做出反应,但对于两种病原体同时发生的情况知之甚少。 通常,白细胞会通过一种称为吞噬作用的过程攻击病原体-吞噬病原体。但是,在真菌感染中,该过程有时会“逆转”-通过称为胞吞作用的过程将真菌从白血球中弹出。 在一项发表在《 PLOS病原体》上的新研究中,研究人员能够证明,当白细胞检测到病毒时,这种驱逐过程会迅速加速。 该小组使用先进的显微镜技术研究了暴露于两种不同类型的病毒,HIV和麻疹的活白细胞,以及真菌病原体新隐球菌。这种机会性病原体在HIV +患者中尤其致命,每年在世界范围内导致约200,000人死亡。 研究人员发现,白细胞不仅没有变得简单地无法处理真菌,反而开始更快地排出真菌细胞。 主要作者,伯明翰大学微生物与感染研究所所长罗宾·梅教授解释说:“我们发现,当病毒存在时,巨噬细胞会更快地弹出它们的猎物-真菌细胞。出乎意料,但这可能是“释放”这些白细胞以应对新的病毒入侵者的尝试。” 由于两种病毒都发生了胞吞作用,因此研究人员得出结论,这种作用可能是对病毒共感染的普遍反应。 罗宾·梅教授补充说:“这是科学家第一次在更现实的继发性(病毒)感染环境中研究我们的免疫系统对真菌感染的反应。我们尚不知道这种机制是否会使白细胞产生清除真菌细胞虽然可以释放巨噬细胞以攻击病毒,但也可以释放真菌细胞,使其继续在体内传播。” Pirbright病毒糖蛋白小组负责人Dalan Bailey博士评论说:“这是微生物(本次真菌和病毒)之间的异族交互作用的另一个有趣例子。我们才刚刚开始了解宿主内微生物相互作用的复杂性,而这合作为这一激动人心的新研究领域提供了新的亮点” 对动物模型研究这些过程将是该团队的下一步,其长期目标是利用触发真菌排出的机制,并利用它们来帮助从体内清除这些病原体。
  • 《比利时研究团队发现植物抗旱的重要基因》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:徐倩
    • 发布时间:2017-11-28
    • 植物无法在资源变得稀缺时更换生长地点,只能通过对环境因素做出响应以实现自身生长的有效调节。干旱是抑制植物生长、造成作物减产的最主要因素,深入了解植物的干旱响应机制对于农业至关重要。来自根特大学(Ghent University)和VIB生命科学研究中心的科研人员,对植物如何适应水分限制条件提出了重要见解,为高产抗旱型作物的先进育种和基因工程提供了指导。该研究成果刊登在权威学术期刊《植物细胞》(Plant Cell)上。 科学家预测,气候变化将带来以干旱为主要表现形式的广泛农业问题,尤其在缺乏新鲜水源和灌溉设施的情况下问题更是频发,最终可能会导致极度的粮食短缺。可见,从基因层面找到帮助作物抗旱的新方法尤其重要。但在此之前,科学家们需要进一步了解干旱条件下控制植物生长速率的基因。 干旱条件下,有些植物生长受到抑制,有些则能正常生长。为深入了解这些生长调控基因及其遗传过程,研究人员将100种拟南芥模式植物置于轻度干旱条件下,对其遗传变异性进行细胞分析和分子分析。 结果显示100份拟南芥材料的抗旱性存在着极大差异:有些发育不良,另一些则正常生长。这一大规模研究使我们能够精确识别出在植物抵御干旱的防御机制中发挥关键作用的基因类别。尽管不同拟南芥材料对干旱的响应差异巨大,但在分子层面上,仅有少数基因在全部100种拟南芥中都受到了影响,这些基因便是植物干旱防御反应的核心。下一阶段将不局限于模式生物,也会在玉米等重要农业经济作物中对识别出的基因进行功能检测和分类研究。 (编译 徐倩)