《亚热带生态所在堆肥物质转化方面取得系列进展》

  • 来源专题:生物育种
  • 编译者: 季雪婧
  •     堆肥过程中腐殖质的合成是提高有机肥品质的关键。生物炭已被发现是一种低成本、环保和有效的腐殖质合成促进剂,但在堆肥过程中,生物炭驱动腐殖质合成的机制尚不清楚。中国科学院亚热带农业生态研究所李德军研究员团队研究了生物炭添加对桑枝和猪粪堆肥过程中腐殖质合成的影响(图1)。利用荧光光谱、高通量测序、宏基因组学和代谢组学等先进技术,综合分析了堆肥过程中真菌群落、功能基因和代谢特征,阐释了生物炭添加对腐殖质形成的影响机制。在成熟期,添加生物炭使黄腐酸和腐殖酸的生成效率分别比对照提高了17.4%和39.4%。添加生物炭显著提高了温度、木质纤维素降解以及脲酶、过氧化物酶、锰过氧化物酶和木质素过氧化物酶的活性,并改变了真菌群落组成和多样性,后者与腐植酸含量显著相关。真菌群落的改变提升了高温期和成熟期腐解真菌功能和CAZyme基因的表达。最终,生物炭添加显著提高了成熟期外源性物质代谢(双酚类代谢和醌类生物合成)和氨基酸代谢(色氨酸代谢和酪氨酸代谢),从而通过产生喹啉类、酚类和芳香氨基酸等代谢产物促进腐殖质物合成。综上所述,生物炭添加可以通过选择性调节堆肥过程中真菌群落和代谢特征,有效促进腐殖质的合成,从而有利于有机肥施用后土壤肥力和健康的改善。

相关报告
  • 《合成菌群促进堆肥物质转化与作物生长研究获进展》

    • 编译者:季雪婧
    • 发布时间:2025-07-18
    • 现代农业中,堆肥作为环保的农业废弃物处理方式,能够将有机废弃物转化为肥料并改善土壤质量。但是,木质纤维素是堆肥中难降解的成分,其降解效率提升是研究难点。合成微生物群落的应用特别是在木质纤维素降解中的作用,逐渐成为提升堆肥效率的重要策略。同时,作物的健康生长与土壤微生物群落的平衡密切相关。合成菌群通过调控根际微生物群落,增强作物的营养吸收和抗逆性,从而促进作物生长和抗病能力。因此,优化微生物群落结构和功能,不仅可以提升堆肥质量,而且可以促进作物生长。这是现代农业研究的前沿课题。 近日,中国科学院亚热带农业生态研究所研究员李德军团队在合成菌群促进堆肥物质转化及作物生长研究方面取得系列进展。研究发现,合成菌群在堆肥过程中可提升木质纤维素降解效率并促进作物生长。 该研究揭示了合成菌群在堆肥高温期对木质纤维素降解的机制。合成微生物群落接种降低了木质素、纤维素和半纤维素的含量,并提高了关键降解酶的活性。宏基因组学分析显示,合成菌群增强了与碳水化合物代谢、氨基酸代谢、维生素代谢和能量代谢相关的微生物代谢途径,在基因水平优化了堆肥过程中微生物群落的结构与功能。相关成果发表在《化学工程杂志》(Chemical Engineering Journal)上。 同时,该研究发现合成菌群通过调控真菌群落强化堆肥物质转化。研究显示,合成微生物群落接种提高了Cephaliophora、Thermomyces等关键真菌属的相对丰度,增加了与木质纤维素降解密切相关的功能类群,如木材腐生菌、未定义的腐生菌及凋落物腐生菌的活性。同时,关键物种Hydropisphaera的富集被证实为降解木质纤维素的驱动因子,提升了堆肥后成熟期的有机肥质量。相关成果发表在《生物资源技术》(Bioresource Techonology)上。 进一步,该研究探讨了合成菌群在促进辣椒生长方面的应用。合成菌群接种提高了辣椒植株的株高、茎粗、叶片数量、叶绿素含量及根系活力。高通量测序结果显示,接种合成菌群增加了根际微生物群落的丰富度和关键菌属的丰度,尤其是Sordariomycetes和Pseudarthrobacter的相对丰度与作物生长相关。相关成果发表在《微生物》(Microorganisms)上。 上述系列成果表明,合成菌群接种是高效、生态友好的农业废弃物处理及作物增产策略,为促进农业可持续发展提供了新思路和技术支撑。 研究工作得到国家重点研发计划等的支持。
  • 《化学所在RNA表观遗传修饰的化学调控研究方面取得进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-03-30
    • RNA的表观遗传修饰是RNA调节基因表达的化学基础,利用新反应技术和新分子工具对RNA修饰进行精准调控对揭示RNA介导的遗传信息表达网络具有重要意义。然而由于RNA本身的不稳定性,使得在活细胞水平进行化学调控变得异常艰难。N6-甲基腺嘌呤(m6A)是真核生物最常见和最丰富的一种修饰,占甲基化修饰的80%以上。m6A修饰广泛参与调控mRNA的剪接、运输、稳定性和翻译效率等,并且与肥胖和肿瘤等多种生理功能异常及疾病相关。发展能够直接与m6A修饰进行相互作用的小分子化合物,以此实现在细胞水平上特异性识别m6A修饰并且进行选择性调控,更加精确地描绘RNA的修饰动态过程及其效应,具有十分重要的生物学意义和应用价值。   在国家自然科学基金委、科技部和中国科学院的支持下,中国科学院化学研究所分子识别与功能重点实验室研究员程靓团队长期从事该领域的基础研究,发展了一系列针对重要RNA表观遗传修饰的高选择、高灵敏、时空分辨的化学转化、荧光标记的原理和方法。他们前期报道了首例在蓝光照射下,维生素B2选择性促进核苷水平的m6A去甲基化研究(Chem. Commun. 2017, 53, 10734),为后续在细胞水平调控m6A奠定了基础。最近,他们和活体分析化学重点实验室研究员汪铭课题组合作,首次实现了化学小分子对RNA表观遗传修饰的直接干预。研究表明,核黄素单核苷酸(FMN)作为人工去甲基化酶,能够利用细胞中的氧气实现核苷、寡核苷酸以及活体细胞水平上的m6A去甲基化。FMN的作用方式是特异性地氧化N6-甲基取代的腺苷,而不是传统的作为甲基化酶的抑制剂或去甲基化酶的激动剂。即使在甲基化酶过表达的细胞中,FMN依然可以有效地下调m6A的表达水平,表明FMN有望作为新型的靶向m6A修饰的小分子抑制剂进行开发,对治疗由m6A过表达引起的生理疾病以及深入研究m6A的生物学功能提供了候选化合物。相关成果发表于《德国应用化学》