《新法高效回收钙钛矿太阳能电池》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2025-02-13
  • 据最新一期《自然》杂志报道,瑞典林雪平大学研究人员开发出一种回收钙钛矿太阳能电池的新方法,其回收过程中使用的主要溶剂是水,无需使用对环境有害的溶剂。不仅能将电池所有部件反复回收利用,而且回收后的电池效率与原始电池相当。

    未来几年,电力使用量或将大幅增加。为减少对气候的影响,需要多种可持续能源协同工作。太阳能作为一种可再生能源,拥有巨大的潜力。其中,钙钛矿太阳能电池是下一代太阳能电池中最有前景的技术之一。它们相对便宜、易于制造,而且轻便、灵活、透明。由于这些特性,钙钛矿太阳能电池可以布置在屋顶、玻璃窗等多种不同表面上。此外,它们可将多达25%的太阳能转化为电能,可与当今的硅太阳能电池相媲美。

    不过,钙钛矿太阳能电池目前的寿命短于硅太阳能电池,因此,高效且环保的钙钛矿太阳能电池回收技术至关重要。此外,钙钛矿太阳能电池还含有少量铅,这是实现高效率所必需的,但也对回收流程的有效运行提出了更高要求。

    目前拆解钙钛矿太阳能电池的方法,主要是用一种名为二甲基甲酰胺的物质,它是油漆溶剂的常见成分。二甲基甲酰胺有毒,对环境有害且可能致癌。

    林雪平大学研究人员此次开发的新方法,以水作为拆解钙钛矿的溶剂,能从水溶液中回收高质量的钙钛矿。

    研究人员表示,他们可以回收所有部件,包括盖板、电极、钙钛矿层以及电荷传输层。

    下一步,他们计划继续研究该方法,推动其在工业流程中更大规模的应用。

  • 原文来源:https://www.cnenergynews.cn/kejizhuangbei/2025/02/13/detail_20250213198958.html
相关报告
  • 《新型钙钛矿太阳能电池:转换率18.1%》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-10-30
    • 钙钛矿太阳能电池在近日又获得了新的研究进展。南京工业大学海外人才缓冲基地(先进材料研究院)黄维院士、王建浦教授团队利用3溴苯甲胺制备了高结晶性、低缺陷的准二维钙钛矿薄膜。 据了解,该薄膜上层是高度取向生长的三维钙钛矿组分,其较小的带隙和低的激子束缚能可实现低能太阳光子利用和高效电荷分离。薄膜底部是竖直生长的宽带隙钙钛矿组分,有利于实现高效的电荷传输。基于这种独特结构的钙钛矿薄膜,实现了功率转换效率达18.2%的准二维钙钛矿太阳电池。未封装器件在40%相对湿度的大气环境下老化2400小时,效率仍保持初始值的82%。 更重要的是,将未封装器件浸入水中60秒,其参数几乎没有变化,展现出优异的水稳定性。此外,该器件也能作为发光二极管很好的工作,外量子效率可达3.85%。在大气环境下,未封装器件在200 mA cm-2大电流密度下寿命达96小时,刷新了钙钛矿发光二极管稳定性的世界纪录。 该研究表明,基于3溴苯甲胺的准二维钙钛矿材料有望实现高效稳定的钙钛矿光电器件,而精确调控钙钛矿薄膜生长是实现这一目标的关键因素之一。 本文封面图来源于图虫创意 .
  • 《我国学者在高效稳定钙钛矿太阳能电池方面取得进展》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-02-06
    • 图 (A)器件结构示意图;(B、C)不同构型的电池老化后的ToF-SIMS深度剖面图。(D)无MoS2钝化和有MoS2钝化的钙钛矿的相变能量曲线。(E)钙钛矿、MoS2/钙钛矿、MoS2/钙钛矿/MoS2薄膜的TRPL衰减曲线。(F)在中国计量科学研究院认证的最优钙钛矿太阳能电池性能;(G)最优钙钛矿微型组件性能;(H)钙钛矿太阳能电池的高温运行稳定性。   在国家自然科学基金项目(批准号:52125206、52302320)等资助下,北京大学周欢萍教授与合作者在高效稳定钙钛矿太阳能电池方面取得进展。相关研究成果以“晶圆级单层硫化钼集成实现高效稳定钙钛矿太阳能电池(Wafer-scale monolayer MoS2 film integration for stable, efficient perovskite solar cells)”为题,于2025年1月10日在线发表于《科学》(Science),论文链接:https://www.science.org/doi/10.1126/science.ado2351。   金属卤化物钙钛矿以其优越的光电性能和低廉的成本成为最有前景的新一代光伏材料。尽管钙钛矿太阳能电池发展迅速,但同时实现高效和稳定仍是巨大挑战。卤化物钙钛矿由于其软晶格和相对较弱的键,在太阳能电池运行过程中容易降解。即使通过封装来隔离水分和氧气,钙钛矿在热、光照和电场下的不稳定性仍是其商业化应用亟需解决的关键问题。   周欢萍教授团队提出将晶圆级连续单层MoS2集成到钙钛矿层的上、下界面以形成稳定器件构型,从而显著增强钙钛矿太阳能电池的效率和稳定性。研究表明,晶圆级MoS2插层由于连续二维形态,从物理上最大程度地阻挡了钙钛矿离子向载流子传输层的迁移。而且,MoS2通过与钙钛矿强配位相互作用在化学上稳定了α相FAPbI3。MoS2插层还通过与钙钛矿形成Pb-S键化学钝化钙钛矿表面缺陷,并通过与钙钛矿I型能带排列阻挡少子复合,从而显著减少了载流子非辐射复合。此外,单层MoS2的原子级厚度克服了钝化质量和载流子传输之间难以协同的挑战,最大限度地提高了钙钛矿太阳能电池的开路电压(认证VOC=1.20 V)和填充因子(认证FF=84.3%)。包含MoS2/钙钛矿/MoS2结构的钙钛矿太阳能电池和组件分别实现了高达26.2%(认证稳态效率为25.9%)和22.8%的光电转换效率。此外,电池表现出卓越的湿热稳定性(在85℃和85%相对湿度下老化1200小时后保留初始效率的95%)、光照稳定性(在连续一个太阳照射下在开路状态下老化2000小时后保留初始效率的96.6%)和运行稳定性(在室温下连续一个太阳照射下在最大功率点跟踪2000小时后效率基本没有衰减,在85℃下连续一个太阳照射下在最大功率点跟踪1200小时后保留初始效率的96%)。   本研究通过界面工程将二维材料与软晶格光电材料结合起来,为提高钙钛矿基光电器件的性能提供了有效策略,并可以扩展到传感器、探测器等其他相关领域支撑高效稳定器件的构建。