《浙江大学研制出全球首个电驱动钙钛矿激光器》

  • 来源专题:光电信息技术
  • 编译者: 王靖娴
  • 发布时间:2025-08-31
  • 【内容概述】据光行天下8月31日报道,近日,浙江大学光电科学与工程学院/海宁国际联合学院狄大卫教授、邹晨研究员和赵保丹教授团队研制了世界上第一个电驱动钙钛矿激光器。这是一个包含两个光学微腔的“双腔”激光器,它将低阈值钙钛矿单晶微腔子单元与高功率微腔钙钛矿LED子单元集成于同一个器件,形成了一个垂直堆叠的多层结构。这种新型半导体激光器,其发射激光所需的最小电流(阈值电流)为 92A/cm2,比最好的有机半导体激光器还低一个数量级,且表现出较好的稳定性,并能在36.2 MHz的带宽下实现快速调制,有望应用于片上数据传输、计算和生物医学等领域。

       驱动激光器工作所需的外部能量源主要包括电和光两种形式。过去十余年间,全球学者在光驱动钙钛矿激光方向取得了系列重要进展,然而,光驱动通常需要借助体积庞大的外部光源(如脉冲激光器),它使器件的适用范围十分有限。研发电驱动钙钛矿激光器,是钙钛矿光电子学领域一直以来的最大挑战,也是全球众多科研团队共同追寻的目标。

       “为了实现电驱动激光发射,我们发明了一种集成式的双腔结构。我们的方案是,将高功率微腔钙钛矿LED子单元与高质量单晶钙钛矿微腔子单元紧凑地集成在同一器件中”,狄大卫介绍。该器件将微腔钙钛矿LED在电激励下产生的大量光子高效地耦合到第二个微腔中,并激发单晶钙钛矿增益介质,产生激光。

        电驱动钙钛矿激光器可用于光学数据传输等多种应用场景,还可用作集成光子芯片和可穿戴设备中的相干光源。团队发现,该器件能在36.2 MHz带宽下通过电脉冲进行快速调制。这种调制速率是通过减小器件有效面积以实现最小电阻电容(RC)常数,并使用硅衬底改善散热实现的。

    (文献原文见附件)

  • 原文来源:http://mp.weixin.qq.com/s?__biz=MjM5MjIxNzI4Mg==&mid=2654050960&idx=1&sn=cad52451f6fe1597d901d108c65d940c&scene=0#wechat_redirect
相关报告
  • 《全球首个电驱动钙钛矿激光器问世》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-09-01
    • 浙江大学光电科学与工程学院教授狄大卫、邹晨和赵保丹团队研制了世界上第一个电驱动钙钛矿激光器。近日,相关研究论文发表于《自然》。 激光器种类繁多,当前钙钛矿半导体、有机半导体和量子点等新型激光材料展现出显著优势。在这些材料中,钙钛矿半导体因其发射光谱可调(可实现各种色彩),且在光驱动条件下能实现极低的激光发射阈值,具有十分广阔的技术前景。然而,一直以来,研发电驱动钙钛矿激光器是钙钛矿光电子学领域的最大挑战,也是全球众多科研团队共同追寻的目标。 为实现电驱动激光发射,研究人员发明了一种集成式的双腔结构,将高功率微腔钙钛矿LED子单元与低阈值钙钛矿单晶微腔子单元集成于同一个器件,形成了一个垂直堆叠的多层结构。该器件将微腔钙钛矿LED在电激励下产生的大量光子高效耦合(耦合效率达82.7%)到第二个微腔中,并激发单晶钙钛矿增益介质,产生激光。 在电激发条件下,钙钛矿激光器的激光阈值为92安培/平方厘米,比最好的电驱动有机激光器还要低一个数量级。而且,电驱动钙钛矿激光器表现出比有机激光器更优异的可重复性和稳定性,能在36.2兆赫兹的带宽下实现快速调制。这种调制速率是通过减小器件有效面积以实现最小电阻电容常数,并使用硅衬底改善散热实现的。 电驱动钙钛矿激光器可用于光学数据传输等多种应用场景,还可用作集成光子芯片和可穿戴设备中的相干光源。研究人员表示,未来还需要克服微腔钙钛矿LED子单元纳秒级的自发辐射寿命限制,以实现器件的吉赫兹级高速运行。
  • 《复旦大学研制出世界上首个全硅激光器》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2018-01-19
    • 科学网1月18日上海讯(记者黄辛 通讯员韩蕴如)复旦大学信息科学与工程学院吴翔教授、陆明教授和张树宇副教授团队合作,研制出世界上首个全硅激光器。相关研究成果日前以快报形式发表于《科学通报》(Science Bulletin)。 据悉,不同于以往的混合型硅基激光器,这次研究最终实现由硅自身作为增益介质产生激光。 集成硅光电子结合了当今两大支柱产业——微电子产业和光电子产业——的精华。硅激光器是集成硅光电子芯片的基本元件,是实现集成硅光电子的关键。集成硅光电子预计将广泛应用于远程数据通信、传感、照明、显示、成像、检测、大数据等众多领域。 然而,硅自身的发光极弱,如何将硅处理成具有高增益的激光材料,一直是一个瓶颈问题。自2000年实验证明硅纳米晶材料可以实现光放大以来,这一瓶颈始终限制着硅激光器的发展。 早在2005年全硅拉曼激光器问世时,有关“全硅激光器”的新闻就曾引起过社会关注。然而,这是一种将外来激光导入到硅芯片后产生的激光器,硅本身并不作为光源。同年,混合型硅基激光器面世。这种激光器是在现有的硅基波导芯片的基础上,直接粘合上成熟的III-V族半导体激光器,使两个部件组合成为一个混合型硅基激光器。同样,硅本身不是光源。混合型激光器和现有硅工艺兼容性较差,还会产生晶格失配问题。 专家介绍,这次研发的硅激光器与以往不同,它的发光材料(增益介质)是硅本身(硅纳米晶材料),激光器可做在硅芯片上,所以是真正意义上的全硅激光器。复旦大学研究人员首先借鉴并发展了一种高密度硅纳米晶薄膜制备技术,由此显著提高了硅纳米晶发光层的发光强度;之后,为克服常规氢钝化方法无法充分饱和悬挂键缺陷这一问题,又发展了一种新型的高压低温氢钝化方法,使得硅纳米晶发光层的光增益一举达到通常III-V族激光材料的水平;在此基础上还设计和制备了相应的分布反馈式(DFB)谐振腔,最终成功获得光泵浦DFB型全硅激光器。这种激光器不仅克服了半导体材料生长过程中会产生的晶格失配和工艺兼容性差的问题,同时,作为地表储备量第二丰富的元素,以硅做光增益材料也可以避免对稀有元素如镓、铟等的过度依赖。 目前,全硅激光器仍需采用光泵浦技术,在紫外脉冲光的激励下,由硅材料自身产生激光。未来,复旦大学团队还将进一步研发和完善电泵浦技术,通过向硅纳米晶激光器内注入电流,产生激光输出,以电发光,走完距离实际应用的最后一公里,促进全硅激光器的产业化发展。