《多段位液位检测功能如何实现?》

  • 来源专题:智能制造
  • 编译者: icad
  • 发布时间:2023-06-09

  • 在一些家用设备中,不仅需要单个液位检测,也需要多段位液位检测。多段位液位检测主要是满足在一些应用上,需水量充足,或者分段水位监测来达到设备的智能化这一目的等。例如:咖啡机多段位检测,可实现不同咖啡的冲泡剂量的不同,达成不同风味,设备有了这一功能,即可评估用户想要什么咖啡,是否有充足的水量调配,以满足咖啡冲泡的品质。多段位的检测点数可以按照设备所需要的进行定制。例如10%、20%、30%等等多个比例检测。

    目前适合做多段位液位检测的传感器有哪些呢?且具有高可靠性高精度等特点。

    第一种:多段位液位检测——光电原理
    可分为2种情况,一种是接触式,另外一种是非接触式。接触式多段位检测,有两种实现形式,一种是在水箱开多个孔实现多段位检测,缺点在于水箱需开多个孔位来满足安装。另外一种就是将多个点集成为一体,便可不用开多个孔位。

    而非接触多段位液位检测,棱镜与传感器部分分离,以此达到不接触液体检测,可集成做成做个点检测,需要在水箱上设计棱镜,可满足水箱需移动的需求,也可检测水箱是否在位。

    第二种:多段位液位检测——电容原理
    将电容式液位传感器多个点集成一体,同样也是非接触式检测,无需改动水箱,但是对于水箱的材质以及厚度是有要求的。
    两者相比,光电式液位传感器相对于电容式液位传感器可靠性更高,精度更好。.
  • 原文来源:http://bbs.gongkong.com/d/202306/905983/905983_1.shtml
相关报告
  • 《纳米技术如何实现早期阿尔茨海默氏症的检测》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2021-03-20
    • AZO纳米发布关于纳米医学的内容,文章指出一项新的纳米技术突破可能有助于早期发现阿尔茨海默氏症和其他神经退行性疾病,并帮助它们的治疗。研究小组在血液中发现了以前未知的生物标记物,可以用来检测AD。科学家们在这一发现的基础上,开发了一种针对这些生物标记物的尖端检测方法,该方法依靠纳米技术来检测受试者血液中的神经退化迹象。这可能意味着在AD和其他神经退行性疾病的最初症状变得明显之前多年就能发现,从而使患者在大脑发生重大损伤之前就能得到早期有效的治疗。这也使医生和医疗专业人员能够更有效地跟踪AD的发病和发展,使他们能够更好地了解这种破坏性的疾病。 研究人员转向纳米技术,通过提高目前质谱分析技术的灵敏度来帮助开发他们的早期AD诊断方法。这取决于脂质体的使用——脂质体是一种球形分子,其层状类似于细胞膜表面——来引诱和捕获血液中的蛋白质,这些蛋白质表明淀粉样斑块和神经退行性疾病的存在。早期对患有AD的啮齿目动物的试验表明,纳米颗粒可以吸引数百种与神经退化有关的蛋白质。这些蛋白质被完整地困在颗粒表面,使科学家能够提取和分析它们。这项研究更像是一次钓鱼探险:我们不知道海洋表面下有什么。我们开发的纳米工具使我们能够更深入地观察血液蛋白质组,在数千种其他血液循环分子中,识别出与大脑神经退化过程直接相关的感兴趣的蛋白质。 该研究的合著者、曼彻斯特大学纳米医学教授Kostas Kostarelos说 跟踪AD不同阶段血液中蛋白质的波动水平——从病前状态一直到有症状的疾病——意味着该团队已经能够绘制出疾病监测中的一些重要模式。 最终,这可能导致新的血液测试的可能性,以预测AD和广泛的神经退行性疾病的发病。 Kostarelos总结道:“我们希望这些阿尔茨海默氏症的早期预警信号有一天能够发展为血液测试,我们正在积极寻求在人类血液中验证这些特征。”
  • 《智能所实现对水稻伤流液中重金属离子的选择性检测》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-10-22
    • 智能所黄行九研究员和技术生物所吴跃进研究员合作,利用简单易制备的纳米材料成功实现对复杂水稻伤流液环境中重金属离子的选择性电化学检测。相关的研究成果已发表在Environmental Science-Nano杂志上(2018, DOI: 10.1039/C8EN00879E)。 众所周知,水稻中的重金属离子通过食物链对人类健康构成威胁。伤流液携带着水稻生长所必须的营养物质以及水稻根部吸收的重金属离子,沿导管向水稻果实-稻米移动。因此,检测水稻伤流液中的重金属离子对于探究重金属离子在水稻中的迁移机制至关重要。电化学方法非常适用于检测重金属离子。然而,电化学检测实际伤流液中的重金属离子具有挑战性。一方面,水稻伤流液的成分过于复杂,包括小离子(K+,Na+,Ca2+,Mg2+,Fe3+,Cu2+,Zn2+,Mn2+等),蔗糖,ATP,氨基酸,植物激素等。另一方面,与其他物质的浓度相比,伤流液中重金属离子的浓度太低。其他物质的严重干扰和高检测限对伤流液中重金属离子的电化学检测带来了巨大的挑战。 研究人员基于上述问题,研究了基于谷胱甘肽功能化的金/多壁碳纳米管(MWCNTs-GSH-Au-GSH)纳米材料作为敏感界面用于电分析水稻伤流液中Pb2+。实验结果表明,MWCNTs-GSH-Au-GSH敏感界面不仅能高灵敏地检测Pb2+(灵敏度高达1122.8 μA μM-1 cm-2,检测限(0.01μM)满足检测痕量Pb2+的要求),而且不受伤流液中其它共存物质的干扰。大量小尺寸的金纳米粒子均匀且致密地固定在谷胱甘肽功能化的碳纳米管上,阻止了金纳米粒子的团聚,使得MWCNTs-GSH-Au-GSH电极在6个月的稳定性测试中表现出非常优异的稳定性。此外,通过10个不同的MWCNT-GSH-Au-GSH电极检验出MWCNTs-GSH-Au-GSH传感器具有很好的重现性。研究人员通过XPS和EXAFS深入地研究了MWCNTs-GSH-Au-GSH电极对Pb2+的高选择性和灵敏度的机理。XPS结果表明,在MWCNTs-GSH-Au-GSH上,-COOH、-CONH-和-NH2对Pb2+有很强的抓捕能力,EXAFS进一步证明了这些强相互作用。此外,XPS结果表明在电化学预富集过程中,MWCNTs-GSH-Au-GSH对Pb2+的吸附能力高于对其他离子的吸附能力,从而提高了电化学检测的选择性。在电化学溶出过程中,大量吸附并被还原的Pb0在金纳米粒子上被催化氧化,从而产生很强的电化学信号。 这项研究利用简单易制备的纳米材料实现对水稻伤流液中重金属离子的高灵敏、选择性电化学检测。这将可能为水稻植株的根,茎,叶和果实中重金属离子的检测提供一种简单有效的方法,对进一步研究水稻中重金属离子的迁移和转化有着重要意义。 该研究工作获得国家自然科学基金重点项目、大科学装置联合基金、中国科学院创新交叉团队、博士后创新人才支持计划等项目的支持。