《ribbon arrays for enhanced hydrogen evolution reaction》

  • 来源专题:现代化工
  • 编译者: 武春亮
  • 发布时间:2024-07-15




















  • Skip to content

    Accessibility Links

    Skip to content
    Skip to search IOPscience
    Skip to Journals list
    Accessibility help











    IOP Science home





    Accessibility Help







    Search


    Journals


    Journals list
    Browse more than 100 science journal titles


    Subject collections
    Read the very best research published in IOP journals


    Publishing partners
    Partner organisations and publications


    Open access
    IOP Publishing open access policy guide


    IOP Conference Series
    Read open access proceedings from science conferences worldwide




    Books


    Publishing Support



    Login

    IOPscience login / Sign Up








    Close

    Click here to close this panel.



    Search all IOPscience content








    Article Lookup

    Select journal (required)

    Select journal (required)2D Mater. (2014 - present)Acta Phys. Sin. (Overseas Edn) (1992 - 1999)Adv. Nat. Sci: Nanosci. Nanotechnol. (2010 - present)Appl. Phys. Express (2008 - present)Biofabrication (2009 - present)Bioinspir. Biomim. (2006 - present)Biomed. Mater. (2006 - present)Biomed. Phys. Eng. Express (2015 - present)Br. J. Appl. Phys. (1950 - 1967)Chin. J. Astron. Astrophys. (2001 - 2008)Chin. J. Chem. Phys. (1987 - 2007)Chin. J. Chem. Phys. (2008 - 2012)Chinese Phys. (2000 - 2007)Chinese Phys. B (2008 - present)Chinese Phys. C (2008 - present)Chinese Phys. Lett. (1984 - present)Class. Quantum Grav. (1984 - present)Clin. Phys. Physiol. Meas. (1980 - 1992)Combustion Theory and Modelling (1997 - 2004)Commun. Theor. Phys. (1982 - present)Comput. Sci. Discov. (2008 - 2015)Converg. Sci. Phys. Oncol. (2015 - 2018)Distrib. Syst. Engng. (1993 - 1999)ECS Adv. (2022 - present)ECS Electrochem. Lett. (2012 - 2015)ECS J. Solid State Sci. Technol. (2012 - present)ECS Sens. Plus (2022 - present)ECS Solid State Lett. (2012 - 2015)ECS Trans. (2005 - present)EPL (1986 - present)Electrochem. Soc. Interface (1992 - present)Electrochem. Solid-State Lett. (1998 - 2012)Electron. Struct. (2019 - present)Eng. Res. Express (2019 - present)Environ. Res. Commun. (2018 - present)Environ. Res. Lett. (2006 - present)Environ. Res.: Climate (2022 - present)Environ. Res.: Ecology (2022 - present)Environ. Res.: Energy (2024 - present)Environ. Res.: Food Syst. (2024 - present)Environ. Res.: Health (2022 - present)Environ. Res.: Infrastruct. Sustain. (2021 - present)Eur. J. Phys. (1980 - present)Flex. Print. Electron. (2015 - present)Fluid Dyn. Res. (1986 - present)Funct. Compos. Struct. (2018 - present)IOP Conf. Ser.: Earth Environ. Sci. (2008 - present)IOP Conf. Ser.: Mater. Sci. Eng. (2009 - present)IOPSciNotes (2020 - 2022)Int. J. Extrem. Manuf. (2019 - present)Inverse Problems (1985 - present)Izv. Math. (1993 - present)J. Breath Res. (2007 - present)J. Cosmol. Astropart. Phys. (2003 - present)J. Electrochem. Soc. (1902 - present)J. Geophys. Eng. (2004 - 2018)J. High Energy Phys. (1997 - 2009)J. Inst. (2006 - present)J. Micromech. Microeng. (1991 - present)J. Neural Eng. (2004 - present)J. Nucl. Energy, Part C Plasma Phys. (1959 - 1966)J. Opt. (1977 - 1998)J. Opt. (2010 - present)J. Opt. A: Pure Appl. Opt. (1999 - 2009)J. Opt. B: Quantum Semiclass. Opt. (1999 - 2005)J. Phys. A: Gen. Phys. (1968 - 1972)J. Phys. A: Math. Gen. (1975 - 2006)J. Phys. A: Math. Nucl. Gen. (1973 - 1974)J. Phys. A: Math. Theor. (2007 - present)J. Phys. B: At. Mol. Opt. Phys. (1988 - present)J. Phys. B: Atom. Mol. Phys. (1968 - 1987)J. Phys. C: Solid State Phys. (1968 - 1988)J. Phys. Commun. (2017 - present)J. Phys. Complex. (2019 - present)J. Phys. D: Appl. Phys. (1968 - present)J. Phys. E: Sci. Instrum. (1968 - 1989)J. Phys. Energy (2018 - present)J. Phys. F: Met. Phys. (1971 - 1988)J. Phys. G: Nucl. Part. Phys. (1989 - present)J. Phys. G: Nucl. Phys. (1975 - 1988)J. Phys. Mater. (2018 - present)J. Phys. Photonics (2018 - present)J. Phys.: Condens. Matter (1989 - present)J. Phys.: Conf. Ser. (2004 - present)J. Radiol. Prot. (1988 - present)J. Sci. Instrum. (1923 - 1967)J. Semicond. (2009 - present)J. Soc. Radiol. Prot. (1981 - 1987)J. Stat. Mech. (2004 - present)JoT (2000 - 2004)Jpn. J. Appl. Phys. (1962 - present)Laser Phys. (2013 - present)Laser Phys. Lett. (2004 - present)Mach. Learn.: Sci. Technol. (2019 - present)Mater. Futures (2022 - present)Mater. Quantum. Technol. (2020 - present)Mater. Res. Express (2014 - present)Math. USSR Izv. (1967 - 1992)Math. USSR Sb. (1967 - 1993)Meas. Sci. Technol. (1990 - present)Meet. Abstr. (2002 - present)Methods Appl. Fluoresc. (2013 - present)Metrologia (1965 - present)Modelling Simul. Mater. Sci. Eng. (1992 - present)Multifunct. Mater. (2018 - 2022)Nano Ex. (2020 - present)Nano Futures (2017 - present)Nanotechnology (1990 - present)Network (1990 - 2004)Neuromorph. Comput. Eng. (2021 - present)New J. Phys. (1998 - present)Nonlinearity (1988 - present)Nouvelle Revue d'Optique (1973 - 1976)Nouvelle Revue d'Optique Appliquée (1970 - 1972)Nucl. Fusion (1960 - present)PASP (1889 - present)Phys. Biol. (2004 - present)Phys. Bull. (1950 - 1988)Phys. Educ. (1966 - present)Phys. Med. Biol. (1956 - present)Phys. Scr. (1970 - present)Phys. World (1988 - present)Phys.-Usp. (1993 - present)Physics in Technology (1973 - 1988)Physiol. Meas. (1993 - present)Plasma Phys. Control. Fusion (1984 - present)Plasma Physics (1967 - 1983)Plasma Res. Express (2018 - 2022)Plasma Sci. Technol. (1999 - present)Plasma Sources Sci. Technol. (1992 - present)Proc. Phys. Soc. (1926 - 1948)Proc. Phys. Soc. (1958 - 1967)Proc. Phys. Soc. A (1949 - 1957)Proc. Phys. Soc. B (1949 - 1957)Proc. Phys. Soc. London (1874 - 1925)Proc. Vol. (1967 - 2005)Prog. Biomed. Eng. (2018 - present)Prog. Energy (2018 - present)Public Understand. Sci. (1992 - 2002)Pure Appl. Opt. (1992 - 1998)Quantitative Finance (2001 - 2004)Quantum Electron. (1993 - present)Quantum Opt. (1989 - 1994)Quantum Sci. Technol. (2015 - present)Quantum Semiclass. Opt. (1995 - 1998)Rep. Prog. Phys. (1934 - present)Res. Astron. Astrophys. (2009 - present)Research Notes of the AAS (2017 - present)RevPhysTech (1970 - 1972)Russ. Chem. Rev. (1960 - present)Russ. Math. Surv. (1960 - present)Sb. Math. (1993 - present)Sci. Technol. Adv. Mater. (2000 - 2015)Semicond. Sci. Technol. (1986 - present)Smart Mater. Struct. (1992 - present)Sov. J. Quantum Electron. (1971 - 1992)Sov. Phys. Usp. (1958 - 1992)Supercond. Sci. Technol. (1988 - present)Surf. Topogr.: Metrol. Prop. (2013 - present)Sustain. Sci. Technol. (2024 - present)The Astronomical Journal (1849 - present)The Astrophysical Journal (1996 - present)The Astrophysical Journal Letters (2010 - present)The Astrophysical Journal Supplement Series (1996 - present)The Planetary Science Journal (2020 - present)Trans. Amer: Electrochem. Soc. (1930 - 1930)Trans. Electrochem. Soc. (1931 - 1948)Trans. Opt. Soc. (1899 - 1932)Transl. Mater. Res. (2014 - 2018)Waves Random Media (1991 - 2004)

    Volume number:

    Issue number (if known):

    Article or page number:





















    Nanotechnology


















    Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing.
    Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications.
    We are proudly declaring that science is our only shareholder.















    ACCEPTED MANUSCRIPT




    Antimony-assisted controlled growth of PtSe2 ribbon arrays for enhanced hydrogen evolution reaction


    Tian Li1, Liusi Yang2, Guangjie Zhang3, Jiaying Zhang4, Jingqi Feng1, Xinying Peng4, Peng Xu5, Shuli He2 and Donglin Ma1




    Accepted Manuscript online 11 July 2024
    ?



    © 2024 IOP Publishing Ltd



    What is an Accepted Manuscript?




    DOI 10.1088/1361-6528/ad61eb

    Download Accepted Manuscript PDF















    Figures

    Skip to each figure in the article




    Tables

    Skip to each table in the article




    References





    Citations





    Article data

    Skip to each data item in the article

    What
    is article data?



    Open science






















    Article metrics














    Submit

    Submit to this Journal




    Permissions

    Get permission to re-use this article




    Share this article































    Article and author information




    Author e-mailsmadonglin@cnu.edu.cn
    Author affiliations1 department of physics, Capital Normal University, 105 W.3rd Ring Rd North, Haidian, Beijing, Beijing, 100037, CHINA
    2
    Capital Normal University, 105 W.3rd Ring Rd North, Haidian, Beijing, 100037, CHINA
    3
    National Center for Nanoscience and Technology, No.11 ZhongGuanCun BeiYiTiao, Haidian District, 100190, CHINA
    4
    Capital Normal University, 105 W.3rd Ring Rd North, Haidian, Beijing, Beijing, 100037, CHINA
    5
    National Center for Nanoscience and Nanotechnology, No.11 ZhongGuanCun BeiYiTiao, Beijing, 100190, CHINA

    ORCID iDsTian Li https://orcid.org/0000-0002-9687-2289Guangjie Zhang https://orcid.org/0000-0003-0498-3545Jiaying Zhang https://orcid.org/0009-0000-1996-0966Donglin Ma https://orcid.org/0000-0002-0536-1871


    Dates

    Received 19 December 2023
    Revised 11 March 2024
    Accepted 11 July 2024
    Accepted Manuscript online 11 July 2024





















    Journal RSS





    Sign up for new issue notifications










    10.1088/1361-6528/ad61eb

    Abstract



    In this study, we report the successful synthesis of few-layer parallel PtSe2 ribbons on an Au foil employing a surface melting strategy via the chemical vapor deposition (CVD) growth method at 650℃. The controlled formation of parallel ribbons was directed by the Au steps generated through antimony treatment. These ribbons exhibit an average length of exceeding 100 μm and a width of approximately 100 nm across a substantial area. Electrocatalysis measurements showcase the catalytic performance of PtSe2 ribbons grown on Au foil, which can be further augmented through subsequent oxidation treatment. This investigation introduces an effective growth method for few-layer ribbons at low temperatures and broadens the scope of employing the substrate-guided strategies for the synthesis of one-dimensional materials. Additionally, it underscores the potential of PtSe2 ribbons as an electrocatalyst for hydrogen evolution.




    Export citation and abstract

    BibTeX
    RIS







    During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.


    As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.


    After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0


    Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.





















    Back to top









    10.1088/1361-6528/ad61eb

    You may also like

    Journal articles



    Molecular beam epitaxy of PtSe2 using a co-deposition approach


    High carrier mobility in single-crystal PtSe2 grown by molecular beam epitaxy on ZnO(0001)


    Interfacial electronic properties of 2D/3D (PtSe2/CsPbX3) perovskite heterostructure


    PtSe2/graphene hetero-multilayer: gate-tunable Schottky barrier height and contact type


    Thickness-dependent ultrafast hot carrier and phonon dynamics of PtSe2 films measured with femtosecond transient optical spectroscopy


    Enhanced broadband light absorption of ultrathin PtSe2 in metal–insulator–metal structure



































    IOPscience


    Journals


    Books


    IOP Conference Series


    About IOPscience


    Contact Us


    Developing countries access


    IOP Publishing open
    access policy


    Accessibility




    IOP Publishing


    Copyright 2024 IOP Publishing


    Terms and Conditions


    Disclaimer


    Privacy
    and Cookie Policy




    Publishing Support


    Authors


    Reviewers


    Conference
    Organisers












    This site uses cookies. By continuing to use this
    site you agree to our use of cookies.



    IOP Publishing Twitter page






    IOP Publishing Facebook page






    IOP Publishing LinkedIn page






    IOP Publishing Youtube page






    IOP Publishing WeChat QR code






    IOP Publishing Weibo page























  • 原文来源:https://iopscience.iop.org/article/10.1088/1361-6528/ad61eb/meta
相关报告
  • 《Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution?》

    • 来源专题:绿色印刷—可穿戴电子
    • 编译者:张宗鹏
    • 发布时间:2016-04-13
    • Abstract Flexible three-dimensional (3D) nanoarchitectures have received tremendous interest recently because of their potential applications in wearable electronics, roll-up displays, and other devices. The design and fabrication of a flexible and robust electrode based on cobalt sulfide/reduced graphene oxide/carbon nanotube (CoS2/RGO-CNT) nanocomposites are reported. An efficient hydrothermal process combined with vacuum filtration was used to synthesize such composite architecture, which was then embedded in a porous CNT network. This conductive and robust film is evaluated as electrocatalyst for the hydrogen evolution reaction. The synergistic effect of CoS2, graphene, and CNTs leads to unique CoS2/RGO-CNT nanoarchitectures, the HER activity of which is among the highest for non-noble metal electrocatalysts, showing 10?mA cm−2 current density at about 142?mV overpotentials and a high electrochemical stability.
  • 《PNAS,6月5日,Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-06-07
    • Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions View ORCID ProfileYingjie Wang, Meiyi Liu, and View ORCID ProfileJiali Gao PNAS first published June 5, 2020 https://doi.org/10.1073/pnas.2008209117 Edited by Peter J. Rossky, Rice University, Houston, TX, and approved May 27, 2020 (received for review April 27, 2020) Abstract Molecular dynamics and free energy simulations have been carried out to elucidate the structural origin of differential protein–protein interactions between the common receptor protein angiotensin converting enzyme 2 (ACE2) and the receptor binding domains of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [A. E. Gorbalenya et al., Nat. Microbiol. 5, 536–544 (2020)] that causes coronavirus disease 2019 (COVID-19) [P. Zhou et al., Nature 579, 270–273 (2020)] and the SARS coronavirus in the 2002–2003 (SARS-CoV) [T. Kuiken et al., Lancet 362, 263–270 (2003)] outbreak. Analysis of the dynamic trajectories reveals that the binding interface consists of a primarily hydrophobic region and a delicate hydrogen-bonding network in the 2019 novel coronavirus. A key mutation from a hydrophobic residue in the SARS-CoV sequence to Lys417 in SARS-CoV-2 creates a salt bridge across the central hydrophobic contact region, which along with polar residue mutations results in greater electrostatic complementarity than that of the SARS-CoV complex. Furthermore, both electrostatic effects and enhanced hydrophobic packing due to removal of four out of five proline residues in a short 12-residue loop lead to conformation shift toward a more tilted binding groove in the complex in comparison with the SARS-CoV complex. On the other hand, hydrophobic contacts in the complex of the SARS-CoV–neutralizing antibody 80R are disrupted in the SARS-CoV-2 homology complex model, which is attributed to failure of recognition of SARS-CoV-2 by 80R.