《NAT WATER:活性污泥制备单原子催化剂用于水净化》

  • 来源专题:岩土力学与工程信息资源网
  • 编译者: 李娜娜
  • 发布时间:2024-07-22
  • 市政污泥处置是一个紧迫的全球性问题,对社会构成了巨大的经济和环境挑战。全世界每年从城市污水处理厂产生的废弃污泥达8000万-9000万吨干物质,而且还在不断增加,给社会带来了巨大的经济和环境挑战。尽管废弃污泥具有重要的资源价值,但受限于其产量大、危害性、成分复杂,可回收价值元素浓度低等特点,高效且有效的资源化策略仍难以实现。为此,中国科学技术大学研究人员开展了市政污泥升级资源化研究并取得重要进展。

    研究设计了一种直接将废弃污泥巧妙地转化为用于水净化的高价值单原子催化剂(SAC)的方法。这一过程包括通过形成反应性锚定位点和选择性化学键,将污泥中存在的微量氧化还原反应过渡金属原位升级为碳、氮、硫、磷、硅和铝等共配位单原子形态。衍生的SAC在类芬顿催化降解各种污染物的过程中表现出卓越的反应性、稳定性和选择性。结构分析和密度泛函理论计算显示,共配位铁单原子是催化剂中的主要反应位点,其他不同配位结构的单原子过渡金属也形成并协同实现了超高的催化性能。此外,研究还进行了生命周期评估和投资回收期分析,评价了此升级策略的环境影响和经济潜力。与当前主流的焚烧技术相比,此方法的全生命周期对人类健康、生态系统和资源的影响较小,具有更大的减排潜力和更高的经济效益。

    与传统的焚烧法相比,研究提出的升级再循环方法为废弃污泥处置开辟了一条新道路,为安全、经济且可持续的废弃污泥管理的商业化提供了重要支撑。相关研究成果发表于《Nature Water》[1]。

    [1] Upcycling Waste Sewage Sludge Into Superior Single-Atom Fenton-Like

    Catalyst for Sustainable Water Purification

  • 原文来源:https://doi.org/10.1038/s44221-024-00258-x
相关报告
  • 《新型催化剂 助力高效绿色制备氨气》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-01-20
    • 氨是世界上最重要的基础化学品之一,在现代工农业生产中具有广泛用途。但传统的合成氨工艺需要在高温高压条件下进行反应,能耗高且造成大量温室气体排放。目前,能够在常温常压下实现氨合成的电催化合成氨技术,被公认为是一种绿色节能的高效碳减排技术。其中,设计制备高活性和稳定性的电催化剂是该技术实用化的关键。 近日,南京工业大学吴宇平教授课题组联合武汉理工大学的赵焱教授课题组最新研究证明,新型单原子催化剂“钼单原子负载的二维磷化硼催化剂”是一种很有前途的电催化合成氨催化剂,有望大幅提高制氨的产率,减少物料和能量的浪费。相关成果发表于《能源与环境材料》上。 目前,在全球低碳经济和我国可持续发展战略理念的影响下,开发新型绿色合成氨技术替代传统合成氨工艺是当今的研究热点之一。其中,电催化还原氮气合成氨技术具有独特的优势,被公认为是一种能够在常温常压下实现氨合成的绿色节能高效技术。 “电催化合成氨技术实用化的关键,是要设计制备出高活性和高稳定性的电催化剂。为了筛选出这样的催化剂,我们用缺陷二维磷化硼(BP)作为载体材料,然后将12种过渡金属单原子分别负载于BP上,从中筛选出新型单原子合成氨催化剂。”吴宇平介绍,团队通过研究筛选发现,钼单原子负载的二维磷化硼催化剂材料,不仅具有高效的氮气活化还原合成氨能力,同时在抑制析氢竞争反应等方面性能同样突出。 “合成氨本质上是一种还原反应。氮气分子在常温常压下具有一定的惰性,钼单原子负载的二维磷化硼催化剂材料可以使其活化,从而促进还原反应过程;并且这种催化剂还能减少反应过程中氢气的释放,抑制析氢竞争反应。”论文第一作者、南京工业大学博士研究生刘再春解释,相关研究证明,新催化剂对发展高效碳减排合成氨技术具有重要意义。
  • 《青岛能源所开发出绿色合成方法制备高活性和高稳定性铁单原子催化剂》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2021-02-07
    • 探索具有良好氧还原活性、稳定性的非贵金属催化剂对于减少贵金属在可持续能源技术研究中的消耗至关重要。近年来,单原子Fe锚定在N掺杂碳(Fe-Nx/C)上的催化剂因具有最大的原子利用率和较高的本征活性而受到广泛关注。Fe掺杂的锌基有机金属框架结构(ZIF)材料在高温热解过程中会形成多孔碳载体负载的Fe-Nx活性中心,因此ZIF材料被认为是合成Fe-Nx/C催化剂(x主要为4)的合适前驱体。然而,现阶段在合成ZIF前驱体及衍生获得Fe-Nx/C单原子催化剂时通常需要用到有毒溶剂(如DMF、甲醇)和强酸清洗,对环境危害较大且极大地限制了过渡金属单原子催化剂的规模化合成和进一步的实际应用。因此,开发制备工艺简单、避免使用有毒及强酸碱试剂的绿色方法合成高效、稳定的单原子催化剂对于新一代燃料电池的发展具有重要意义。   图1 Fe-Nx/C的合成路径以及电镜表征图。   近日,青岛能源所梁汉璞研究员带领的能源材料与纳米催化研究组,在利用可循环再生的生物质制备Fe1单原子(Carbon, 2020, 157, 614-621. DOI: 10.1016/j.carbon.2019.10.054.)和Fe1Pt1双单原子(ACS Sustain. Chem. Eng. 2021, 9, 1, 189–196. DOI: 10.1021/acssuschemeng.0c06558.)的基础上,又开发出了一种步骤简单、过程环保的合成方法用来制备具有氮掺杂的多孔碳纳米棒负载的Fe单原子催化剂(图1a)。该方法实现了在水系中合成具有Fe均匀掺杂的金属有机框架材料前驱体,后续经过一步高温热解,在不需要经过酸洗处理的情况下即可获得高度均匀分散的Fe单原子催化剂。所合成的催化剂电镜表征见图1(b-i)。该催化剂展现了优良的氧还原催化活性和长时间稳定性。在碱性介质中,其起始电位和半波电位比商业Pt/C催化剂分别高出了30 mV和60 mV。经过20小时的稳定性测试,商业Pt/C催化剂损失达到了53%而所合成催化剂仅损失5%。在酸性介质中也展现出了较好的催化性能。作为负极材料组装到锌空电池当中,实现了142 mW cm-2的高功率密度,比商业Pt/C电池高出了近58 mW cm-2,并优于大多数已经报道的过渡金属单原子催化剂。该研究工作为简单、绿色地合成氮掺杂碳负载Fe单原子电催化剂提供了一种有效途径。相关成果近期发表在《ACS Sustainable Chemistry & Engineering》杂志上(ACS Sustainable Chem. Eng. 2021, 9, 137-146)。   上述研究获得大连清洁能源国家实验室和中国科学院科研创新基金,青岛创业创新领军人才基金,大连化物所-青岛能源所两所融合项目基金以及中国科学院绿色过程制造创新研究院项目基金的支持。