《中国科学院海洋研究所定量重建晚上新世以来长江流域硅酸盐风化历史》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: 熊萍
  • 发布时间:2025-04-06
  • 近日,国际地学刊物Global and Planetary Change《全球和行星变化》在线发表了中国科学院海洋研究所万世明研究团队在新生代大陆风化演化方面的最新研究成果。研究团队和英国伦敦大学学院等开展合作,基于中国大陆架科学钻探在南黄海获取的CSDP-1岩芯沉积物的研究,首次定量重建了晚上新世以来长江流域硅酸盐风化通量的演化历史,提出大河流域盆地尺度“地质空调”和“隆升风化”两种风化机制协同调控了晚新生代气候变化。

    深海记录揭示新生代气候整体变冷,但是变冷机制不明确。喜马拉雅-青藏高原隆升引起的硅酸盐风化作用增强被认为是导致大气CO2浓度下降和新生代变冷的重要原因。然而,硅酸盐风化如何响应构造和气候变化以及对全球碳循环的长期影响仍然不清楚,其中关键原因是缺乏亚洲大陆长时间尺度的风化和剥蚀通量的定量重建。

    长江是发源于青藏高原东部的亚洲第一大河,跨越中国地形的三大阶梯,最终注入中国东部边缘海。因此,长江流域盆地的长期风化剥蚀历史的定量重建,对于评估青藏高原地区的风化碳汇效应及新生代气候变冷机制极其重要。相比于陆相盆地,海洋记录具有更好的区域代表性、沉积连续性和年代约束优势。南黄海是地质历史上长江的主要沉积汇,其保存的巨厚沉积物是重建构造时间尺度长江流域大陆风化剥蚀演化的宝贵材料。研究团队以南黄海陆架CSDP-1岩芯沉积物为研究材料,在前期物源和沉积环境研究的基础上,通过粘土组分的常微量元素组成和陆源通量分析,结合已发表的数据,重建了过去3.5?Ma(百万年)以来长江流域硅酸盐风化强度和风化通量的演化历史。

    结果显示,3.5?Ma以来长江流域的硅酸盐风化强度(程度)以及硅酸盐风化的CO2消耗效率整体呈现下降趋势。同时,全球变冷和区域干旱度增强,表明气候变化对长江流域化学风化强度的变化起主导作用。综合多个长岩芯记录和区域地震资料重建的陆源物质通量,均呈现先减少后增加的趋势,反映了长江流域的大陆侵蚀通量由气候主导转变为构造控制。定量估算表明,晚上新世以来长江流域硅酸盐风化引起的碳消耗通量约在0.09-0.21 Tmol/yr变化,且其长期变化趋势类似于侵蚀通量,表明侵蚀通量是风化通量演变的一级控制因素,而化学风化强度的影响有限。晚上新世-早更新世晚期,长江流域构造相对稳定,由于全球变冷和区域变干,侵蚀通量和硅酸盐风化通量逐渐降低,CO2的消耗减少,从而对气候起到负反馈作用;而早更新世晚期以来,流域构造相对活跃,驱动了侵蚀通量增强,硅酸盐风化导致的CO2消耗增加,进而贡献了全球气候进一步变冷。

    结合以前的研究工作,研究团队认为,在长时间尺度上,大陆硅酸盐风化强度(程度)的变化主要受控于全球温度,而侵蚀通量则是控制硅酸盐风化通量即碳消耗的关键因素,风化通量受硅酸盐风化强度变化的影响较小。由于构造活动对侵蚀通量的重要控制作用,源自喜马拉雅-青藏高原的大型河流不同构造演化阶段对长期碳循环的影响可能是变化的。在较慢的侵蚀时期,由于构造相对稳定,硅酸盐风化主要响应于气候变化,对地球气候起到负反馈的“地质空调”作用;在快速侵蚀时期,很可能与构造相对活跃有关,硅酸盐风化消耗了更多的CO2,从而构造隆升驱动着全球气候变冷。这一机制既解释了晚新生代全球气候的加速变冷,又避免了地球在几百万年内耗尽大气中的二氧化碳而温度失衡,从而这两种风化过程可能协同调控着全球气候长期变化。

    本研究是迄今南黄海最长且连续的大陆风化剥蚀记录,对于揭示地球气候长期演变机制具有重要科学意义。

    论文第一作者为中国科学院海洋研究所博士后张晋,通讯作者为万世明研究员。本研究得到了中国大陆架科学钻探计划、国家自然科学基金、中国科学院战略先导专项、国家重点研发计划等的支持。

    论文信息:

    Jin Zhang,Shiming Wan*,Peter D. Clift,Hualong Jin,Zehua Song,Yi Tang,Zhaojie Yu,Kaidi Zhang,Jian Lu,Wenjun Jiao,Anchun Li,2025. Evolution of silicate weathering in the Yangtze River Basin since 3.5?Ma as archived in the East China Seas: Controlling factors and global significance. Global and Planetary Change 250,DOI: 10.1016/j.gloplacha.2025.104807

    https://www.sciencedirect.com/science/article/pii/S092181812500116X

  • 原文来源:https://qdio.cas.cn/2019Ver/News/kyjz/202503/t20250331_7584253.html
相关报告
  • 《中国科学院海洋研究所研究揭示新生代喜马拉雅风化长期增强》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-02-02
    • 近日,国际综合性期刊Science Bulletin在线发表了中国科学院海洋研究所、法国巴黎萨克雷大学、法国岩石与地球化学国家研究中心、自然资源部第一海洋研究所等单位合作的最新研究成果“Enhanced weathering input from South Asia to the Indian Ocean since the late Eocene”。研究团队基于印度洋北部浮游有孔虫钕同位素沉积记录,首次提供了晚始新世以来南亚风化长期增强的关键证据,揭示了喜马拉雅构造隆升及硅酸盐风化增强在新生代全球变冷中的重要驱动作用。 新生代地球气候经历了剧烈的变化:以整体变冷和南北两极相继发育大冰盖为基本特征,而大气CO2浓度的逐渐降低被认为是新生代长期变冷趋势的关键因素。但是,其降低的原因是由于构造活动引起的地球内部排气作用所主导,还是青藏高原隆升-风化/有机碳埋藏所驱动,迄今仍然充满争论。这些假说很大程度上基于数值模拟研究,缺乏可靠量化的新生代风化剥蚀记录,尤其缺少强烈影响全球风化通量平衡的喜马拉雅-青藏高原地区的长期风化记录。因此,建立新生代喜马拉雅长时间序列风化通量演变,揭示其与构造-气候变化的联系,是回答新生代气候变冷问题的关键。 恒河–雅鲁藏布江作为全球沉积物输送量最大的河流系统,新生代向孟加拉湾直接输送了来自喜马拉雅和青藏高原东南部的巨量陆源剥蚀物质。因此,研究人员聚焦于拥有独特地理位置的孟加拉湾,利用国际大洋钻探计划(ODP)758站岩芯中的浮游有孔虫放射性Nd同位素记录重建了晚始新世以来印度洋北部海水Nd同位素的长期演变,并将其与印度洋中部海水钕同位素记录进行对比而剔除印度洋水团影响,其二者差值(ΔεNd)的变化趋势被用以指示来自南亚的大陆风化输入对印度洋的贡献。 浮游有孔虫因其碳酸盐壳上的自生铁锰覆层可以吸附海水中的溶解态Nd,其εNd值代表了该区域底层海水的钕同位素组成。众多研究表明大陆边缘的溶解态Nd同位素特征与大陆剥蚀过程密切相关。孟加拉湾海水εNd值分布呈现出明显的南北梯度,这是由于来自喜马拉雅大河流域(如恒河–雅鲁藏布江河流系统)的陆源输入(εNd: -16至-10)与来自南大洋的水团输入(εNd: -9至-7)具有截然不同的Nd同位素特征所造成,表明了印度洋深层水团与南亚大陆风化输入的二端元混合。 基于此,研究人员提出了一个新的风化指标:ΔεNd(印度洋北部与中部海水εNd差值),利用二者εNd值的差异来指示喜马拉雅陆源Nd输入的相对贡献。第四纪记录表明,间冰期期间南亚季风降水的增多导致喜马拉雅区域更强的风化剥蚀,最终向孟加拉湾释放了更多的陆源Nd输入。因此,冰期-间冰期尺度ΔεNd指标的应用可以为构造时间尺度风化输入的解释提供潜在方法。 ODP 758站有孔虫εNd值呈现长期变负的趋势,且其与同岩芯碎屑组分εNd值和粘土矿物比值蒙脱石/(伊利石+绿泥石)显示出截然不同的长期变化,但在21 Ma、8 Ma、6 Ma和3 Ma显示出与陆源通量相同的增长趋势,这表明758站有孔虫Nd同位素组成不受沉积物物源和风化程度变化的影响,而主要反映了南亚陆源风化的长期输入演变。 研究人员将新指标ΔεNd应用在构造时间尺度上,利用ODP 758站有孔虫重建的晚始新世以来印度洋北部海水Nd同位素组成与铁锰结壳重建的印度洋中部海水Nd同位素记录进行对比,二者差值(ΔεNd)的变化趋势可指示来自南亚的大陆风化输入对印度洋的贡献。结果显示ΔεNd呈现长期增长的趋势,显示了晚新生代南亚风化的长期增强。其中,25-13 Ma和5-0 Ma南亚风化输入的快速增强时期分别对应了晚渐新世-中新世喜马拉雅造山带的快速隆起期和早上新世青藏高原东南部增长与北半球冰盖形成时期,这表明了南亚区域构造与风化的耦合演化。现代观测表明,喜马拉雅源-汇系统主要的河流流域硅酸盐风化每年共消耗~1.6×1012 mol的CO2,约占全球河流硅酸盐风化通量的30%。对比发现,在南亚大陆风化增强期间,大气CO2浓度也显示出整体下降的趋势;与此同时,ΔεNd长期增强与全球海水Li和Sr同位素指示的大陆风化趋势相似。这些证据均暗示喜马拉雅构造隆升引起的硅酸盐风化增强对于晚新生代全球变冷有着重要驱动作用。 本研究是迄今北印度洋地区最长且连续的有孔虫Nd同位素记录,对于理解喜马拉雅构造隆升、风化和新生代气候演化具有重要科学意义。 论文的第一作者为中国科学院海洋研究所博士后宋泽华,通讯作者为海洋所万世明研究员和巴黎萨克雷大学Christophe Colin教授。本研究得到了中国大洋发现计划(IODP-China)、国家自然科学基金、国家重点研发计划、泰山和鳌山学者项目等的支持。 论文信息:Song, Z., Wan, S.*, Colin, C.*, France-Lanord, C., Yu, Z., Dapoigny, A., Jin, H., Li, M., Zhang, J., Zhao, D., Shi, X., Li, A., 2023. Enhanced weathering input from South Asia to the Indian Ocean since the late Eocene. Science Bulletin 68, DOI: 10.1016/j.scib.2023.01.015. https://www.sciencedirect.com/science/article/abs/pii/S2095927323000312
  • 《中国科学院海洋所在人类活动扰动长江流域火历史研究方面取得重要进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2020-02-08
    • 国际地学刊物《第四纪科学评论》(Quaternary Science Reviews, Top 5%)近日在线发表中国科学院海洋研究所万世明研究员(通讯作者)和裴文强博士研究生(第一作者)与美国路易斯安那州立大学、中国海洋大学、中国科学院烟台海岸带研究所等单位合作的最新研究成果“Human impact overwhelms long-term climate control of fire in the Yangtze River Basin since 3.0 ka BP”。科研人员通过东海陆架钻探岩芯提取出的黑碳记录重建了过去7千年以来长江流域的火历史,发现自3千年以来人类活动对长江流域火活动的影响显著增强。 火作为一种重要的生态因子,可以通过扰动陆地生态系统和改变大气组成对生物圈、大气圈产生重要影响。前人研究揭示,火与气候、植被状况密切相关,但火对气候、植被的响应在不同时空尺度可能存在差异。随着人类学会用火,火成为人类改造自然和影响全球碳循环的重要方式。因此,追踪地质时期人类火历史,将加深我们对人类改造自然历史进程的理解。 黑碳是古火重建的重要载体,是生物质或化石燃料不完全燃烧所形成的具有高热稳定性的含碳物质,包括焦炭(chars)、木炭(charcoals)、烟灰(soot)、高度聚集的多环芳烃类物质等。由于黑碳颗粒小(微米级)、密度轻、化学稳定性高,可被河流或风长距离搬运,其广泛存在于土壤、沉积物、大气乃至高山和极地冰雪中,因而沉积黑碳是区域古火历史重建的极佳材料。 长江作为亚洲第一长河,自西向东横贯中国中部,流域面积达180万平方公里,是中华民族文明的摇篮,孕育了璀璨的人类文化。而长江所注入的东海接收了巨量长江源沉积物,包括植被燃烧产生的黑碳。因此,东海陆架储存的黑碳很可能蕴含了丰富的长江流域区域火历史。研究人员通过对比位于长江水下三角洲的岩芯T1和东海内陆架的岩芯ECMZ的黑碳稳定碳同位素组成,确定了7千年以来ECMZ岩芯的黑碳沉积主要源于长江输入,并基于黑碳含量重建了7千年以来长江流域高分辨率火历史。 研究结果显示,7千年-3千年之间,火与温度、降水在千年和百年尺度均呈密切正相关,表现为暖湿期火活动更多,冷干期火明显减少,表明气候对区域火的主控地位。但是,在3千年以来,火与气候的关系在多种时间尺度均发生重要转变,暗示3千年以来人类活动对长江流域火活动的影响超过自然因素。在千年时间尺度,温度和降水在3千年-1千年基本稳定,仅过去1千年来稍有增强,而长江流域火活动在3千年以来长期逐渐减弱,重金属元素Pb、Cu含量则相应显著升高,暗示3千年来人类活动(如种植农业、金属冶炼)的持续增强,使流域森林覆盖率(燃料量)降低而限制了火的发生,从而改变了之前火-自然之间的固有关系。在百年时间尺度上(3千年以来),所识别出的六次火活跃期均发生在相对寒冷干旱的时期,并明显与中国历史上从北方黄河流域向长江流域的数次人口南迁时期相对应,指示人类因素对火的干扰增强。考古和气候研究表明,长期干旱、寒冷的气候更易导致饥荒、战争和人口迁移。北方人口的南迁及其带来的更新的农耕技术进一步促进了长江流域人类活动的增强和短期火的频繁发生。 本研究不仅表明人类活动可以改变火与自然气候之间的固有关系,而且揭示出火对人类活动的响应在不同时间尺度可能是截然不同的。该研究提升了我们对人类用火扰动自然历程的认识。 本项工作得到了国家自然科学相关人才计划(万世明)和重点基金、泰山学者和青岛海洋科学与技术国家实验室“鳌山人才”计划、全球变化与海气相互作用专项等的支持。