《复旦大学孔彪团队开发新型智能中空纳米机器人》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2022-02-08
  • 开发新型智能中空纳米机器人是当前最前沿的研究领域之一,对精准医疗、传感检测等领域的发展至关重要。目前大多数中空纳米机器人为不对称开口结构,然而单一的开口会限制物质和能量的传输效率。因此,用多孔壳层替代单一开口是提高中空纳米机器人性能的潜在途径之一。

    针对以上问题,复旦大学孔彪课题组开发动力学调控界面选择性超组装策略,成功构筑具有选择性中空结构的纳米机器人,且其拓扑结构可以精准调控。此外,该新型中空纳米机器人可以实现货物分子的可控装载及卸载,在生物医疗等领域具有潜在应用。相关研究工作日前发表于化学旗舰期刊Angewandte Chemie International Edition上,第一作者为谢磊。

    作者巧妙利用前驱体中同时发生的(烯基)自由基聚合反应和(三甲氧基硅烷)水解聚合反应,实现了有机硅在聚苯乙烯纳米颗粒表面的选择性岛状生长,随后经过包裹聚多巴胺及高温煅烧得到具有选择性中空结构的纳米机器人。此外,通过精确调控两种聚合反应的动力学,可以实现对岛状有机硅尺寸和数量等参数的精准调节,进而可以根据不同需求合成具有可调拓扑结构的多功能纳米机器人。

    作者进一步充分利用其特殊中空结构及光热性能,证明该中空纳米机器人可以实现货物分子的高效装载及在近红外光照射下的可控释放。FEA模拟结果进一步证明了该中空纳米机器人的中空限域装载及卸载能力。

    在该工作中,孔彪研究员团队开发了动力学调控界面选择性超组装策略,并基于该策略构筑了一系列具有可调拓扑结构的中空纳米机器人。该超组装策略为设计开发新型多功能智能中空纳米材料提供了一种简便的方法。

    相关研究工作日前以“Kinetics-Regulated Interfacial Selective Superassembly of Asymmetric Smart Nanovehicles with Tailored Topological Hollow Architectures”为题发表于化学旗舰期刊Angewandte Chemie International Edition上。

相关报告
  • 《德国开发高速纳米机器人电驱动新技术》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-03-16
    • 德国慕尼黑工业大学发布消息称,该校与慕尼黑大学的科研人员合作开发出一种新型的纳米机器人电驱动技术,较目前通过加酶和DNA链等生化驱动方法快10万倍。新的控制技术不仅适合来回移动染料或纳米颗粒,微型机器人的手臂也可对分子施力。研究人员强调,纳米机器人体积小,价格低廉,可搜索百万计样本中的特定物质,并逐步合成复杂分子,将适用于医学诊断和药物开发。 借助荧光共振能量转移(FRET)技术,研究人员可通过荧光显微镜的监视器跟踪DNA纳米机器人的运动。普通模式下,被固定在微小DNA纳米机器人手臂尖端的发光分子产生的光点来回摆动,点击鼠标就足以让光点向不同的方向移动。通过施加电场,可在平面上随意旋转机器人手臂。 研究人员称,在“分子工厂”采用电控纳米机器人实施目标分子的识别和分拣在世界上尚属首创,其原理并不复杂,即DNA分子含有负电荷,施加电场后,生物分子就可以移动,因此借助电流脉冲可控制由DNA组成的纳米机器人。 相关研究结果于2018年1月19日以封面故事形式在国际学术杂志《科学》上发表。
  • 《复旦开发高效的蓝光发射钙钛矿纳米晶》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-09-25
    • 胶体CsPbX3(X=Br、Cl和I)钙钛矿纳米晶在整个可见光谱上表现出可调谐的带隙,在绿色和红色区域表现出较高的光致发光量子产率。但是,由于缺乏高效的蓝光钙钛矿纳米晶,限制了它们在光电应用中的发展。 来自复旦大学张树宇副教授团队最新研究表明,CsPbBr3纳米晶通过钕掺杂可以实现从绿光到深蓝光的可调谐光电发射,在中心波长在459 nm处的纳米晶具有90%的量子产率。相关论文以题为“Highly Efficient Blue-Emitting CsPbBr3 Perovskite Nanocrystals through Neodymium Doping”发表在Advanced Science。 自2015年第一次报告以来,全无机铯铅卤化物钙钛矿CsPbX3 (X=Br、Cl和I)纳米晶(NCs)经历了快速发展。由于其高光致发光量子产率(PLQYs)和窄带单峰发射剖面,组成和相关带隙的灵活性以及材料合成过程简单,在发光二极管、激光器、太阳能电池、和光电探测等领域具有很大的应用潜力。特别是,NCs可以作为白色发光二极管(WLED)的颜色转换荧光粉,并表现出广泛的色域覆盖。此外,光谱的蓝色部分通常是从氯化物基钙钛矿NCs中获得的,该NCs目前具有较低的稳定性和相对较低的PLQY,从而限制了钙钛矿NCs在器件中的应用。 解决这些挑战的一个有效的解决方案是用B位掺杂剂完全或部分取代Pb2+离子。掺杂离子不仅降低了铅的毒性,而且可以通过接近优化的Goldschmidt公差因子来提高CsPbX3 NCs的热稳定性和相稳定性。B位阳离子在决定钙钛矿的电子能带结构及其发射特性方面也起着至关重要的作用。最近的研究已经证明了成功的B位掺杂采用碱土金属离子、过渡金属离子、类金属离子和镧系离子。双发射是Mn2+、Yb3+、Er3+和Eu3+等掺杂物的另一个常见特征,它来源于钙钛矿主体到掺杂客体的能量转移,但是,原始NCs的窄带单峰发射不可避免地受到损害。 通过Sn2+,Cd2+,Zn2+或Al3+部分交换Pb2+可以成功地实现光致发光(PL)蓝移,而没有其他发射峰。但是上述蓝光发射NCs的PLQY仍然不令人满意。为了解决这一问题,通过将Nd3+引入到CsPbBr3 NCs中作为B位掺杂剂,合成了高效的蓝色发射钙钛矿NCS。 图1. a)CsPbBr3:xNd­3+ (x=7.2%) NCs和原始CsPbBr3NCs薄膜的XPS谱。高分辨率XPS光谱分别对应于b)Nd3+3d,c)Pb2+4f和d)Br− 3d。空心圆形符号表示原始数据,实心曲线表示相应的拟合曲线 图2. a)原始CsPbBr3的计算带结构。轨道特征显示了Pb 6s,6p和Br 4p轨道。b)原始CsPbBr3的VBM和CBM的部分电荷密度。c)计算的CsPbBr3:xNd3+的能带结构(x =12.5%)。轨道特征显示了Pb 6s,6p和Br 4p轨道以及Nd 5d轨道。d)Nd3+掺杂的CsPbBr3的VBM和CBM的部分电荷密度 图3. CsPbBr3:xNd3+NCs的溶液时间分辨光致发光衰减曲线 图4. a)WLED的发射光谱。插图显示了工作中的WLED的相关照片。b)与NTSC电视标准和Rec. 2020年标准相比,本工作中WLED的色域。白点显示WLED设备的CIE颜色坐标为(0.34,0.33) 总的来说,通过便捷的室温合成方法首次成功的将Nd3+成功取代了胶体CsPbBr3 NCs中的Pb2+。掺杂浓度可用于以受控方式将发射光谱从绿色调整为蓝色。发出蓝色的CsPbBr3:xNd3+(x = 7.2%)NCs的PLQY值为90%,光谱宽度为19 nm。使用第一性原理计算证明带隙可调性主要由掺杂剂诱导的电子变化驱动,而PLQY的增加与掺杂剂诱导的电子变化驱动的激子结合能增加以及掺杂剂诱导的激子振动子强度提高有关。这种微观上的理解为胶体CsPbX3 NC中的B部位组成工程开辟了新的可能性。