《中国科学院烟台海岸带研究所在环境胁迫荧光探针研究中取得系统性进展》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2022-03-11
  • 近日,中国科学院烟台海岸带研究所陈令新研究员团队在环境期刊Journal of Hazardous Materials上发表了题为“用于检测环境胁迫下生物分子变化的荧光探针”(Fluorescent probes for biomolecule detection under environmental stress, Journal of Hazardous Materials, 2022, 431, 128527)的观点论文。基于自身的研究探索和积累,结合国内外的发展现状及趋势,该文首次、全面总结了用于检测环境胁迫下活性分子浓度变化的荧光探针(图1),文章插图22幅,涉及大约110余种荧光探针;有利于促进荧光探针在环境科学等领域的进一步发展和有效应用,丰富环境成像研究的科学内涵。

    近年来,荧光探针在可视化实时动态检测各种生物分子的浓度变化和迁移方面取得了蓬勃发展。环境因素影响着生物活性分子在有机体的各生命过程中的分布和浓度变化。该文介绍了荧光探针的设计策略以及其应用于不同环境刺激下(例如:缺氧胁迫、缺血再灌注过程、高温/低温刺激、有机/无机化学品暴露、氧化/还原压力胁迫、高血糖刺激和药物治疗引起的毒性等)的活性分子(主要包括:活性氧物种、活性氮物种、活性硫物种、活性硒物种、金属离子以及酶等)的体内外检测。生物体生存受各种环境因素,包括非生物因素(例如:温度、盐度、光照、pH以及氧气浓度)和生物因素(例如:细菌、病毒感染等)的影响。外界环境因素改变造成的胁迫,会传递给有机体,细胞膜上受体接收到刺激信号,从而触发第二信使的产生和传递,其中包括具有不同生理特性的各种生物活性分子(例如:气体、自由基、离子、核苷酸、脂质和脂质衍生物等)。监测环境胁迫下细胞应激反应过程中生物(活性)分子水平的变化对于分子机制的研究、分子靶向治疗的发展和药物的发现提供巨大的潜力,并最终有利于揭示环境、健康和疾病之间的关系。

    针对典型环境因素胁迫下,生物内源活性物种变化的分析监测难题,陈令新研究员团队注重设计合成新型荧光探针,在细胞、组织和活体水平上,实现典型环境胁迫下生物内源活性分子的原位、实时、可视化分析监测。力图阐明典型污染物在生命体内的分布、转运以及与内源物种相互作用的规律,为解决“污染与健康”的深层次问题、及为探明环境胁迫下细胞信号转导和生理功能通路等提供强有力的理论和技术支撑。相关工作已在Chemical Society Reviews, Analytical Chemistry, Advanced Functional Materials, Biomaterials, Chemical Communications, Chemical Science, Journal of Hazardous Materials等期刊发表论文80余篇,授权发明专利10余项。

    原文链接见:https://doi.org/10.1016/j.jhazmat.2022.128527

  • 原文来源:http://www.yic.cas.cn/ky/kydt/202203/t20220309_6386824.html
相关报告
  • 《中国科学院烟台海岸带研究所在大气沉降对近海水体碳和营养盐循环影响方面取得系列研究进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-05-04
    • 大气沉降是海洋生态系统中碳和营养盐等生源要素的主要来源之一,对海洋生物地球化学循环过程具有显著影响。中国科学院烟台海岸带研究所环境灾害监测评估团队以山东半岛北部养马岛海域为代表性研究区域,在大气沉降对近海水体碳和营养盐循环影响研究中取得系列重要进展。该海区是北黄海重要的扇贝养殖区,近年来在全球变暖大背景以及区域性人类活动的影响下,该海域夏季水体缺氧和酸化现象频发,妨碍了扇贝养殖产业的健康发展。研究团队基于对大气总悬浮颗粒物(TSP)及降水样品中碳和营养盐的分析,报道了养马岛附近海域大气颗粒物中水可溶性有机质、营养盐和颗粒有机质及降水中溶解有机质、营养盐和颗粒有机质的季节变化规律,量化了大气干湿沉降输入的有机碳和营养盐对于该海域海水中碳收支的贡献,证实了大气干湿沉降过程是该海域海水中碳的重要来源,探讨了大气沉降过程与区域海水体碳循环和夏季水体低氧现象之间的联系,有助于深入认识大气干湿沉降输入对近海生态系统的综合影响。相关成果相继在Science of the Total Environment和Marine Pollution Bulletin发表论文6篇。 结果表明,干沉降输入的颗粒有机碳(POC)年通量约为水可溶性有机碳(WSOC)的4.1倍;对于湿沉降,POC的年通量约为溶解有机碳(DOC)的46.7%;因此,大气中的POC主要通过干沉降过程输入到海水中,其贡献为71.1%,而水可溶性有机碳和溶解有机碳的情况则相反;如果将大气沉降对海水中有机碳的间接输入也考虑在内,即干湿沉降的养分输入所支持的新生产力贡献的有机碳,大气沉积对研究海域的总有机碳输入达12.0 gC/m2/a,表明大气沉降在近海生态系统碳循环中具有重要作用(Xie et al., STOTEN 2023, 876: 162715)。不同季节TSP中总有机碳(TOC)的来源组成具有显著差异,而总氮(TN)在不同季节具有相似的来源组成;生物质源为TSP和TN的主要来源,其贡献分别为55.5±10.8%和57.3±11.7%;化石燃料燃烧是TOC主要来源,其贡献为47.7±3.4%;春季、夏季和秋季大气沉降对于表层海水悬浮颗粒物(SPM)的贡献分别为17.2±6.7%、10.2±2.0%和18.0±11.0%,表明大气TSP是表层海水SPM的重要来源之一;对于表层海水中的POC而言,春季、夏季和秋季大气沉降的贡献分别为35.2±3.5%、19.2±7.4%和25.5±7.9%,证实大气沉降过程对于近海颗粒碳循环具有重要的影响(Xie et al., STOTEN 2023, 854: 158540)。 TSP中WSOC、有色溶解性有机质(CDOM)和荧光溶解性有机质(FDOM)的含量在冬春季要明显高于夏秋季,主要与不同季节WSOM的来源差异及大气老化过程有关;WSOC的年干沉降通量可以将表层海水的DOC浓度提高10.2 μmol/L,从而对于维持表层水体的次级生产力有重要贡献,在一定程度上影响了研究海域内的碳循环过程;此外,由干沉降进入表层海水的WSOC中生物可利用部分在好氧分解的条件下可导致水体溶解氧(DO)浓度降低~4.8 μmol/L(Xie et al., STOTEN 2022, 818: 151772)。秋季湿沉降中DOC的浓度显著高于其他季节,而冬季湿沉降中有色溶解有机质(CDOM)及类腐殖质组分的荧光溶解有机质(FDOM)浓度最高,主要与不同季节溶解有机质的来源差异及降水的稀释效应有关;通过湿沉降过程向该海域输入的DOC通量为6.31×108 gC/a,约占研究海域海水中DOC储量的4.0%;单次降水事件可使该海域表层水体中生物可利用性DOC的浓度提高0.57±0.54 μmol/L,占异养细菌次级生产每日所需有机碳的12.1±11.4%;5月至8月期间,湿沉降输入的DOC中生物可利用性部分在好氧分解条件下可使表层海水DO浓度降低5.3-8.5 μmol/L/month(Xie et al., STOTEN 2022, 844: 157130)。 降水中营养盐N和Si的浓度在秋季较高、夏季较低,而P的浓度在冬季和春季较高,溶解无机氮(DIN)的湿沉降通量为69.2 mmol/m2/a,占水体DIN外源输入通量的比例为34.4%;大气湿沉降中N/P比显著高于海水中N/P比及Redfield比值,可能会加剧水体中溶解态无机氮磷比的不平衡,促进海水中浮游植物优势种群由硅藻向甲藻的转变,从而不利于区域内海湾扇贝的生长;受强降水过程的影响,夏季DIN和水溶性有机氮(DON)的湿沉降通量高达30.1和4.98 mmol/m2,可支持水体19.3%的新生产力,该部分新生产力占区域内扇贝所摄食颗粒有机碳总量的比例为16.4%(Xie et al., MPB 2022, 182: 114036)。人为活动是TSP中水可溶性无机氮和有机氮(WSDIN和WSDON)的主要来源,沙尘是水可溶性无机磷(WSDIP)和硅酸盐(WSDSi)的主要来源,而水可溶性有机磷(WSDOP)可能来源于海洋生物活动;WSDIN、WSDON、WSDIP、WSDOP和WSDSi的大气干沉降通量分别为21.8、2.7、0.10、0.30和0.73 mmol/m2/a;总体而言,冬季通过大气干沉降获得的生物可利用氮支持的海水新生产力达9.14 mgC/m2/d;大气干沉降输入的DIN/DIP摩尔比的年平均值为216±123(Xie et al., MPB 2021, 172: 112866)。 上述论文为中国科学院战略性先导科技专项(A类)“‘美丽中国’生态文明科技工程专项”子课题“海洋生态环境灾害综合防控技术与示范”(XDA23050303)的研究成果之一,由烟台海岸带所2020级博士研究生谢磊为第一作者,高学鲁研究员为通讯作者。 相关论文详情: 1. Xie, L., Gao, X.*, Liu, Y., Zhao, J., Xing, Q., 2023. The joint effects of atmospheric dry and wet deposition on organic carbon cycling in a mariculture area in North China. Science of the Total Environment, 876: 162715. https://www.sciencedirect.com/science/article/pii/S0048969723013311 2. Xie, L., Gao, X.*, Liu, Y., Yang, B., Yuan, H., Li, X., Song, J., Zhao, J., Xing, Q., 2023. Atmospheric deposition as a direct source of particulate organic carbon in region coastal surface seawater: Evidence from stable carbon and nitrogen isotope analysis. Science of the Total Environment, 854: 158540. https://www.sciencedirect.com/science/article/pii/S004896972205639X 3. Xie, L., Gao, X.*, Liu, Y., Yang, B., Wang, B., Zhao, J., Xing, Q., 2022. Biogeochemical properties and fate of dissolved organic matter in wet deposition: Insights from a mariculture area in North Yellow Sea. Science of the Total Environment, 844: 157130. https://www.sciencedirect.com/science/article/pii/S0048969722042279 4. Xie, L., Gao, X.*, Liu, Y., Yang, B., Lv, X., Zhao, J., Xing, Q., 2022. Atmospheric dry deposition of water-soluble organic matter: An underestimated carbon source to the coastal waters in North China. Science of the Total Environment, 818: 151772. https://www.sciencedirect.com/science/article/pii/S0048969721068480 5. Xie, L., Gao, X.*, Liu, Y., Yang, B., Wang, B., Zhao, J., Xing, Q., 2022. Atmospheric wet deposition serves as an important nutrient supply for coastal ecosystems and fishery resources: Insights from a mariculture area in North China. Marine Pollution Bulletin, 182: 114036. https://www.sciencedirect.com/science/article/pii/S0025326X22007184 6. Xie, L., Gao, X.*, Liu, Y., Yang, B., Lv, X., Zhao, J., 2021. Perpetual atmospheric dry deposition exacerbates the unbalance of dissolved inorganic nitrogen and phosphorus in coastal waters: A case study on a mariculture site in North China. Marine Pollution Bulletin, 172: 112866. https://www.sciencedirect.com/science/article/pii/S0025326X21009000
  • 《中国科学院烟台海岸带研究所在海洋监测装备研制及产业化推广取得进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2024-01-31
    • 技术水平先进、精度高、环境适应性和可靠性高等已成为海洋监测装备研制的发展趋势。中国科学院烟台海岸带研究所陈令新团队通过多年的基础研究积累,突破了近海介质复杂、高盐度梯度、高浊度条件下快速检测技术瓶颈,开发了系列具有自主知识产权的“新原理-新方法-新技术”海洋生态环境要素监测系统。通过微系统、微流控等微纳米科技攻关,采用插拔式模块化设计,研制了海水营养盐、重金属、藻类识别、总磷、总氮等多台(套)原位、走航监测系统,实现了一台仪器 30 分钟 5 种营养盐快速监测。2023年6月完成海水营养盐CNAS校准认证;2023年7月参与由国家海洋环境监测中心组织的海水水质自动监测系统测试,圆满完成设备线性、检出限、零点漂移、精密度、准确度、跨度漂移、盲样、加标等8项测试,测试结果满足测试方案中规定的性能测试指标要求,可用于长期原位监测;2023年9月,完成了与国家海洋标准计量中心联合编制的海洋行业标准《海水营养盐原位自动分析仪现场比对方法》验证试验。 走航营养盐系统体积小、便携、可适用不同场景、不同类型科考船的走航式海水营养盐在线监测系统,该系完成NO2-N、NO3-N、PO4-P、NH4-N、SiO3-Si 等5种营养盐的快速分析检测,参加了“创新一”渤海—北黄海综合调查、国家基金委共享航次计划黄河口重大科学实验研究调查、广西北部湾海域的航次调查。2023年6月,在国家海洋标准计量中心的验证下,分别进行了包含检出限、示值误差和测量重复性在内的CNAS校准工作,以及包含五项营养盐的测量范围、检测时间和废液量等性能指标在内的第三方性能测试。测试结果满足校准规范要求。 陈令新团队的“研发-测试-应用-改进-提升”的仪器研制创新思路,为国产海洋观测仪器装备行业的高质量发展开拓了新模式,促进了海洋环境分析、监测关键技术、多参数在线监测系统等的革新。