《中国科学院地质与地球物理研究所—水资源与地壳流体研究室》

  • 来源专题:水体污染与防治领域信息门户
  • 编译者: 徐慧芳
  • 发布时间:2006-03-22
  • 中国科学院地质与地球物理研究所水资源与地壳流体研究室是借助于地质与地球物理研究所的多学科综合优势,研究水资源(特别是地下水资源)的分布、利用、管理及各种地质流体(包括成矿热液、石油、各种天然气、热水、卤水等等)在地壳中的分布特征、演化过程及与成矿过程有关的科学问题。
  • 原文来源:http://www.iggcas.ac.cn/kydw.asp?column_cat_id=8
相关报告
  • 《中国科学院海洋研究所研究揭示青藏东北缘及邻区地壳变形机制》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-05-27
    • 近日,中国科学院海洋研究所董冬冬研究员团队与南方科技大学海洋科学与工程系海洋地球物理团队合作,利用地震学背景噪声成像技术,在青藏高原东北缘及邻区的地壳变形机制研究中取得重要进展。研究成果以“Seismic azimuthal anisotropy of northeastern Tibetan Plateau from ambient noise double beamforming tomography: implication for crustal deformation”为题发表在地球科学自然指数期刊Journal of Geophysical Research-Solid Earth。 青藏高原的隆起是新生代(~50 Ma)以来印度板块与欧亚板块持续碰撞的结果。关于青藏高原岩石圈形变的动力学机制,目前主要有几种端元模型:分布式缩短模型(岩石圈纯剪切增厚);陆内俯冲模型(亚洲岩石圈俯冲到印度岩石圈之下,岩石圈地幔与地壳解耦);地壳通道流模型(下地壳物质的横向运动)等。青藏高原东北缘作为高原向华北块体扩张的前缘地带,是研究高原隆升、向外扩张生长的关键区域,而关于该区域的地壳形变模式一直存在较大争议。因此,通过地震学成像手段构建高分辨率的地壳精细结构可以为认识青藏东北缘地壳形变机制提供关键证据。 地震波方位各向异性是指地震波速度对传播方位的依赖关系,是研究地壳(岩石圈)变形模式的重要手段。研究团队利用中国地震科学探测项目ChinArray II地震台网记录的三分量连续地震波形数据,发展了一种基于密集台阵的背景噪声成像方法——双聚束成像(Double Beamforming Tomography),可同时提取相速度和方位各向异性信息。进而构建了青藏高原东北缘高分辨率地壳及上地幔剪切波速度结构和方位各向异性模型。 研究结果显示:(1)松潘—甘孜东北部和祁连造山带中下地壳(> 15 km)具有明显的低速异常,但具有不同的方位各向异性特征。其中,松潘-甘孜东北部的中下地壳Vs < 3.4 km/s,且具有较强的近E-W指向方位各向异性特征;而祁连造山带下方的各向异性强度相对较弱,Vs约为3.4-3.6 km/s,高于松潘-甘孜中下地壳。这些观测表明,两者的中下地壳变形机制存在差异。进一步结合区域其他地质地球物理资料(径向各向异性,接收函数,热力学模拟等),我们认为青藏高原是呈阶梯式扩张模式,而松潘-甘孜东北部和祁连造山带分别代表了高原发育的不同阶段。其中,松潘-甘孜的隆起是与印度-欧亚板块的碰撞同期的,代表了高原发育相对成熟的地带,地壳变形主要受地壳通道流控制(各向异性模型限定的地壳流上边界约为30 km深);而祁连造山带是青藏高原扩张的前缘地带,其隆升代表了高原生长的早期阶段,主要由地壳剪切增厚主导,但不排除其正处于地壳流发育的萌芽阶段;(2)通过计算壳内剪切波分裂延迟时间及快轴方向并与观测的SKS做对比,发现在阿拉善块体东部至鄂尔多斯地块西边界处存在壳幔解耦变形,而西秦岭造山处伴随造山活动壳幔发生垂直相干变形。本研究为认识青藏高原东北缘地壳变形机制、推断青藏高原扩张生长过程提供了重要的地震学观测证据。 论文的第一作者为中国科学院海洋所博士后吴晓阳。南方科技大学海洋科学与工程系郭震副教授,陈永顺讲席教授为论文共同通讯作者,合作者还包括南方科技大学海洋科学与工程系李世林、于勇研究助理教授和博士后白启鹏。研究得到国家自然科学基金资助。 论文信息:Wu, X. Y., Guo, Z., Li, S. L., Yu, Y., Bai, Q. P. & Chen, Y. S. (2023). Seismic azimuthal anisotropy of northeastern Tibetan Plateau from ambient noise double beamforming tomography: implication for crustal deformation. Journal of Geophysical Research-Solid Earth. Doi: 10.1029/2022JB026109
  • 《中国科学院深海科学与工程研究所海洋环流观测与数值模拟研究室》

    • 来源专题:物理海洋学知识资源中心
    • 编译者:cancan
    • 发布时间:2018-11-19
    • 海洋环流观测与数值模拟研究室受国家深海研发计划、 中国科学院先导A/B专项、 国家自然科学基金 、中国科学院知识创新工程前沿领域等项目资助,成立于2014年,主要开展深海/深渊海洋环流动力学、海洋水文观测、海洋水团特性、海洋中尺度过程、沿岸上升流等方面研究。机构网址:http://www.idsse.cas.cn/yjsgk2015/zzjg2015/yftx2015/shkxyjb2015/hyhlgcyszmnyjs2015/   研究方向:   深海/深渊环流观测   海洋环境数值模拟   海洋中尺度过程   研究内容:   (1)深渊海洋环流时空特征分布   深渊一般指深度超过6000米的深海沟,深渊环流不仅决定着温度、盐度的变化而且也直接影响着生物的迁徙和深渊有机物质与上层海洋的交换。其极端的深渊环境使得这片海域成为人类最难以企及区域,特别是马里亚纳海沟具有目前最深的“挑战者”深渊,其深渊海环境动力特征研究非常稀少。本实验室拟通过深海海流计、CTD、溶解氧传感器等仪器,搭建深海-深渊潜标观测系统,采集深海-深渊海流、温度、盐度、溶解氧等参数,同时结合走航观测和HYCOM模型研究西北太平洋“马里亚纳海沟”水平环流的空间结构特征及其时空变化,探讨深渊环流与大洋环流的关系,揭示深渊洋流的动力学特征。   (2)深渊潮致混合特征分析   全球海洋中垂向混合过程无处不在,它是全球海洋运动主要的能量来源,决定着大洋中的水团、动能、热能和物质的输送,进而影响全球大洋环流结构和全球气候变化。而深渊并不是孤立的系统,它作为全球大洋环流的通道之一,通过垂向混合保持与外界的水体和物质交换,并影响自身局地环流、水团、沉积物和生物的分布特征。本实验室拟通过分析潜标连续观测的深渊海流数据研究马里亚纳海沟潮流时空变化特征,结合数值模型研究马里亚纳海沟内潮的生成机制,解析内潮能量在深渊封闭地形下的传播和耗散过程,查明马里亚纳海沟内部由于内潮能量耗散导致的垂向混合扩散率分布特征,探讨深渊垂向混合对深渊环流结构的影响。    (3)南海/菲律宾海深层环流   目前南海深海、菲律宾海深层和底层环流观测资料匮乏,通过收集公开的模式资料、国内开放航次的南海深水海盆的温盐剖面、深水观测资料、流速观测等历史观测资料,整理成数据集,并以历史和现场实测资料为基础,通过诊断分析计算、简化理论分析和数值模式对南海深层环流的特征和变化规律进行研究;利用POM、ROMS等数值模型对南海深层环流进行模拟,揭示深层环流的时空分布特征和动力机制,为全面了解南海深海环境打下基础,也为南海资源开发提供理论支撑;研究菲律宾海深层和底层环流的空间分布特征及其变异规律,分析通道形状和通量强度、垂向混合以及海盆地形等因子对菲律宾海深层和底层环流的作用机制,并探讨太平洋深层西边界流对菲律宾海深层和底层环流的潜在影响。   (4)海洋观测技术   锚系潜标是一种固定在海面与海底之间通过锚系绳索连接观测设备的观测链,通过释放装置实现回收和再布放,具有在恶劣海况下进行长期、连续、同步、立体、自动地对海洋环境要素进行全面综合监测的能力,并具有隐蔽性好不易被破坏的优点,是其它调查手段无法代替的有效方法,针对目前国内深海海洋数据实时观测分析的需求,研究深海锚系潜标感应耦合传输技术及声学通信技术,结合移动通信中继平台,研发、布放和回收深海海域具有高时效数据传输功能的锚系潜标阵列;结合声学通信技术、调制解调技术和移动通信中继平台,研发具有智能反馈控制功能的高时效传输潜标;通过布放潜标阵列,对深海海流和物理环境的实现长期、连续、动态监测。