《日本“超级黑膜”能吸收几乎所有光线》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-06-06
  • 日本产业技术综合研究所与量子科学技术研究开发机构合作,制造出一种能通过微细的表面结构吸收所有光线的“超级黑膜”。

    研发小组利用硅橡胶等的表面,形成能捕获所有光的光密封结构,成功开发出“超级黑膜”制造技术,造出的黑膜柔软且耐久性优异。作为技术核心的光密封结构,是利用回旋加速器的离子束照射和化学蚀刻,在聚合物表面形成大量微细的锥形腔结构而实现的。

    将这种结构转印到硅橡胶上制成的黑膜,在紫外线、可见光及红外线等所有波长范围,吸收率均达99.5%以上,其中对热红外线的吸收率达到99.9%以上,为全球最高水平。这种黑膜能映衬出前所未有的黑色,也可用于提高影像对比度,还有望用来防止热成像等的热红外线漫反射。

  • 原文来源:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2019-06/06/content_423008.htm?div=-1
相关报告
  • 《日本着力提高太阳能光伏发电的能效》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2021-12-02
    • 改善日照条件,降成本、增能效就成为日本发展太阳能光电的关键问题。除扩大太阳能光伏发电的规模、增加其用地以外,更重要的是依靠科技力量不断提高太阳能光伏发电的能效。为此,日本的科研机构和企业正在致力于研发进一步提高太阳能光伏发电能效的技术和装置。 11月13日,《联合国气候变化框架公约》第26次缔约方大会(COP26)在英国的格拉斯哥闭幕,大会就《巴黎协定》实施细则等核心问题达成共识,标志着世界各国踏上全面应对气候变化的新征程。 日本首相岸田文雄在11月1日本国大选结束后的第二天便赶赴英国出席COP26世界领导人峰会并发表讲话,重申了前首相菅义伟在4月22日由美国主办的领导人气候峰会上宣布的日本减排目标:到2030年温室气体排放量比2013年减少46%,并努力挑战更高的50%,2050年实现碳中和。 日本要实现这一承诺目标,关键需要加大力量实现电力行业的减排。今年1月日本经济产业省公布的《2050年碳中和绿色增长战略》显示,电力行业仍然较多地依靠传统的燃煤燃气发电,二氧化碳排放量占比为37%,居各行业之首,日本也因此在COP26会议期间被全球环保团体“气候行动网络”颁发“石化奖”。 为解决这一减排关键难题,按时兑现减排目标,日本政府10月22日公布的第6版《能源基本计划》首次提出“最优先”发展可再生能源,提出到2030年可再生能源发电量的占比将达到36%~38%,大幅高于2018年公布的第5版计划所提出的22%~24%的目标。2019年日本的可再生能源占比仅为18%,因此需要加倍的努力,方能兑现承诺的减排目标。 1.将太阳能作为可再生能源的“主力军”。 可再生能源发电主要包括水能、风能和太阳能。 首先看水力发电,日本由于燃料资源匮乏,水力则成为其本土的主要发电资源。过去一个时期日本积极发展水电,1960年水电占比超过50%。后因进口石油价格低廉,转而积极发展火电,加之上世纪70年代大力发展核电,遂水电占比逐年下降,至2009年仅占6%。要在已经废弃的水电基础上重振水电,恐非日本的明智之选。 另外,气候变化引发的自然灾害及其次生灾害也是考量发展水电利弊的不可忽视的要素。例如,今年夏季巴西遭遇91年来最严重的旱灾,给水电敲响了警钟。 巴西可再生能源发电装机总量居南美国家之首,其中水电占比76.8%。据报道,这场旱灾导致巴西的水电站蓄水量严重不足,多座水电站无法足额发电,继而引发电价攀升,迫使巴西政府采取提高燃气等能源的价格、限电等措施。 巴西的这场旱灾及其引发的水电危机再次绷紧了世界畏惧气候变化的神经,使各国重新审视水力资源作为可再生能源发电的利弊,日本也或会从中有所汲取。 同样受气候变化捉弄的还有风能发电。风电是欧洲各国为实现减排目标发展可再生能源发电的重要选项之一,但是,今年夏季以来欧洲的风量减弱,使欧洲的风电遭受打击。受“风灾”影响今夏欧盟的风电总量比去年减少7%,其中西班牙是“重灾区”。 西班牙被誉为“脱碳先进国家”,在其电能结构中,风电占据20%的较大比例。受此次“风灾”影响,9月份的风电量比去年同期减少20%。由于受灾减少的电力需要由只占30%的天然气火电来弥补,所以引起了西班牙的天然气价格和电价暴涨,9月份生活用电价格同比上涨35%。西班牙的“风灾”及其次生灾害的影响深度波及欧洲,一定程度助推了欧洲的能源危机。 一般认为太阳光同样会受气候变化的左右,冬季光照减少,太阳能光伏发电量随之下降。例如,去年12月至今年1月日本曾一度供电紧张,其原因被指“光电量减少”。但是,日本经济产业省的实证结果表明,太阳光(对光伏发电)的影响几乎可以忽略不计,主要原因是枯水期导致水电量下降。因此,太阳能光伏发电受气候变化的影响比我们想象的少得多。 鉴于以上巴西的水电和西班牙的风电以及日本的光电典型案例,日本的第6版《能源基本计划》将36%~38%的可再生能源比例划分为:太阳能14%~16%、风能5%、水能11%,这一配比不无道理。从这一比例可以看出,日本将太阳能确定为可再生能源的“主力军”。 2.依靠科技力量提高太阳能光伏发电的能效。 据中国能源信息平台的资料,截至2019年日本的太阳能光伏发电装机达到6184万千瓦,仅占当时可再生能源的7.2%,未来有很大的发展空间。但是,日本的太阳能光伏发电低能效以及由此产生的电价过高等问题,是阻碍太阳能光伏发电发展的瓶颈。 为解决这一瓶颈问题,日本政府于2009年11月就启动了“太阳能发电富余电量收购制度”,并于2012年7月1日开始实行“固定电价收购政策”,以鼓励企业和民间大力发展和使用包括太阳能在内的可再生能源发电。这些政策有效促进了可再生能源发电领域的投资,到2018年底,可再生能源发电装机增长了4600万千瓦,其中居民太阳能光电增长了583万千瓦,非居民太阳能光电增长了3722万千瓦。 为了降低太阳能光电的收购价格,日本政府从2017年开始对2兆以上容量的太阳能光伏发电实施竞价机制。通过竞价,中标价由2017年11月的17.2~21.0日元/千瓦时下降至2019年9月的10.5~13.99日元/千瓦时。 尽管日本官方、企业和民众为发展太阳能光伏发电作出了一系列的努力,但是,其太阳能光伏发电的成本仍然较大幅度地高于美国、中国等国家。根据国际可再生能源机构(IRENA)的统计,日本的太阳能光伏发电的成本为1千瓦时/13.5日元,是中国(5日元)、美国(6.5日元)的2倍多,比法国和德国高出80%。 因此,改善日照条件,降成本、增能效就成为日本发展太阳能光电的关键问题。除扩大太阳能光伏发电的规模、增加其用地以外,更重要的是依靠科技力量不断提高太阳能光伏发电的能效。为此,日本的科研机构和企业正在致力于研发进一步提高太阳能光伏发电能效的技术和装置。 据日本学者藤和彦撰文介绍,东京大学先端科学技术研究中心冈田至崇教授的研究小组正在研发利用量子点理论完成光电转换的“量子点太阳电池”。 据科技资料介绍,量子点太阳能电池是第三代太阳能光伏电池,也是最新、最尖端的太阳能电池之一,在普通太阳能电池之中引入纳米技术与量子力学理论。与其他吸光材料相比,量子点具有独特的优势:量子尺寸效应。通过改变半导体量子点的大小,可以使太阳能电池吸收特定波长的光线,即小量子点吸收短波长的光,而大量子点吸收长波长的光,增大了吸收系数,提高了光电转换效率。大量理论计算和实验研究表明,量子点太阳能光伏电池在未来的太阳能转换电能中显示出巨大的发展前景。 另外,日本爱知县一宫市的一家风投企业(MCCQUANTA)研发出一种装置,安装在现有的太阳能光伏板可提高其2倍的发电能效,并于10月下旬批量生产。 这一装置也是通过应用量子现象,更多地提取太阳光照射在光伏板产生的电子,以提高光电转换的能效。据称,这一装置如果被广泛使用,“即使不增加用地也可增加2倍的发电量,还可降低一半的成本”。 COP26期间,与会领导人签署了《格拉斯哥气候公约》。公约要求各国加紧努力,逐步减少不使用技术控制二氧化碳排放的发电厂,倡导可再生能源发电,并呼吁结束低效的化石燃料补贴。 当今世界减碳、绿色、可再生已经成为潮流,在潮流的推动下,在目标的引导下,在政策的支持下,无论是日本,还是世界各国,都将有越来越多的资源源源不断地涌入减碳、绿色、可再生领域,鼓励、支持、推动更多的科研人员和企业研发出更多、更好、更高效的可再生能源产品,保护地球,造福人类。
  • 《新的规则阐明了物体如何吸收和发射光线》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-12-25
    • 普林斯顿大学的研究人员发现了控制物体如何吸收和发射光线的新规则,微调了科学家对光的控制,促进了下一代太阳能和光学设备的研究。 这一发现解决了一个长期存在的尺度问题,即光与微小物体的相互作用违反了在更大尺度下观察到的既定物理约束。 该研究的第一作者、电气工程博士后研究员西恩莫尔斯基(Sean Molesky)说,“你对非常小的物体产生的影响与你对非常大的物体产生的影响是不同的。”从一个分子到一粒沙子的移动可以观察到这种差别。“你不可能同时描述两件事,”他说。 这个问题源于光著名的变形性质。对于普通物体,光的运动可以用直线或射线来描述。但是对于微观物体来说,光的波属性起了作用,光线光学的规则被打破了。其影响是显著的。在重要的现代材料中,在微米尺度上的观测表明,红外光单位面积辐射的能量比射线光学预测的要高出数百万倍。 12月20日发表在《物理评论快报》(Physical Review Letters)上的新规则告诉科学家,任何尺度的物体可以吸收或发射多少红外光,从而解决了数十年来大大小小的差异。这部作品将19世纪被称为黑体的概念扩展到了一个有用的现代语境中。黑体是一种理想化的物体,它能以最大的效率吸收和发射光线。 “人们做了很多研究,试图在实践中了解,对于给定的材料,人们如何达到这些黑体极限,”电子工程副教授、该研究的首席研究员亚历杭德罗·罗德里格斯(Alejandro Rodriguez)说。“我们怎样才能制造出完美的吸收体?”一个完美的发射器吗?” “这是一个非常古老的问题,许多物理学家——包括普朗克、爱因斯坦和波尔兹曼——很早就解决了这个问题,为量子力学的发展奠定了基础。” 之前的大量研究工作表明,具有纳米级特征的结构化物体可以增强吸收和发射,有效地将光子困在一个小镜子大厅里。但是没有人定义了可能性的基本限制,留下了关于如何评估设计的主要问题。 新的控制水平不再局限于蛮力试验和错误,它将允许工程师为未来的广泛应用从数学上优化设计。这项工作在太阳能电池板、光学电路和量子计算机等技术领域尤为重要。 目前,研究小组的发现只针对太阳或白炽灯泡等热源。但研究人员希望进一步推广这项工作,使之与其他光源一致,如led、萤火虫或电弧。 这项研究得到了国家科学基金会、康奈尔材料研究中心、国防高级研究计划局和加拿大国家科学与工程研究委员会的部分支持。 ——文章发布于2019年12月23日