《中国科学院海洋研究所研究揭示印度夏季风和南极中层水演化的协同关系》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2022-11-17
  • 近日,国际自然指数(Nature Index)期刊《地球物理研究通讯》(Geophysical Research Letters,简称GRL),在线刊发了中国科学院海洋所万世明研究团队与法国巴黎萨克雷大学、英国伦敦大学学院、法国海洋开发研究院和法国气候与环境科学实验室等单位合作的最新研究成果“Millennial variability in intermediate ocean circulation and Indian monsoonal weathering inputs during the last deglaciation and Holocene”。

    目前,直接的气候观测记录最长不过两百年,限制了我们对长时间尺度气候演化的理解。古气候研究可以弥补观测记录较短的不足,并为气候模式提供结果验证和边界条件。末次冰消期(约19 ka BP ~ 11.5 ka BP),是地球气候演化中最后一次大冰期向暖期过渡的时间段,伴随着大气CO2浓度升高和海平面的快速上升。这与当前全球变暖背景下大气CO2升高和海平面上升的局面十分相似,因此末次冰消期气候演化机制的研究可帮助更好地理解地球气候由冷向暖的转变机制,并为应对当下的全球变暖提供借鉴。

    末次冰消期气候演化研究中一个棘手的难题是破解大气和海洋两种气候系统之间的相互作用机制。前人研究往往采用多种指标分别重建大气或者海洋过程演化,但是由于涉及指标的多解性和不同定性指标之间难以互相比较的问题,不可避免的会影响结论的准确性。如果寻找到可同时反映两种不同的气候系统演化的单一指标,则有潜力减少噪音,并可直接对比两种气候系统的强弱演化。

    基于这一思路,研究人员利用北印度洋的中层水深岩芯,重建了一条跨越过去17000年的有孔虫钕(Nd)同位素记录,分辨率达到了前所未有的200年。该钕同位素记录的变化反映了印度夏季风(ISM)降水驱动的大陆风化输入和南半球来源的南极中层水团(AAIW)强弱的相对变化。因此通过对该钕同位素记录的定量端元分解,我们可以在千年时间尺度上研究北半球季风系统(大气环流)和南半球来源的南极中层水团(海洋环流)的相互作用历史。结果发现,千年时间尺度的冷期,印度夏季风的减弱与南极中层水向北平流的增强相吻合,二者是反向变化;而在距今一万年到八千年之间的暖期,季风活动的增强伴随着持续的强大南极中层水流入,二者是同向变化的。为了验证以上的发现,我们进一步总结了全球范围内使用多种指标追踪的南极中层水演化记录,得出了相对一致的结论。

    研究表明,在冷期向暖期过渡的末次冰消期时,印度夏季风与南极中层水团强弱演化在千年时间尺度上由反向转变为同向的变化可能响应了北大西洋冰川融水和南半球西风带的变化,并在最后一次冰消期的冷暖气候模态转换中起到了关键作用。这一结果也预示,在全球变暖的背景下,印度夏季风与南极中层水团可能会出现同时增强的结果。

    论文的第一和通讯作者为中国科学院海洋研究所副研究员于兆杰。本研究得到国家自然科学基金、中国科学院战略先导科技专项、山东省自然科学相关人才计划等项目的支持。 

    论文信息: 

    https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022GL100003

    https://doi.org/10.1029/2022GL100003

  • 原文来源:http://www.qdio.cas.cn/2019Ver/News/kyjz/202211/t20221115_6548549.html
相关报告
  • 《中国科学院海洋研究所研究揭示南极冰盖形成期全球变冷驱动了东亚夏季风减弱》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-11-20
    • 近日,国际地学自然指数(Nature Index)期刊Journal of Geophysical Research: Solid Earth《地球物理研究杂志-固体地球》在线刊发了中国科学院海洋研究所万世明研究团队与南京大学、美国德州农工大学合作的最新研究成果“Global cooling-driven summer monsoon weakening in South China across the Eocene-Oligocene transition”。研究人员基于南海北部始新世-渐新世沉积物中的磁性矿物特征研究,揭示了磁性矿物对气候变化的响应过程,发现东亚夏季风在始新世-渐新世气候转型期间受到南极冰盖形成和全球变冷的影响而发生了显著减弱。 现代东亚大陆的气候主要受到东亚季风系统的控制,研究东亚季风的长期演变历史和驱动机制不仅可以更好理解地球系统多圈层相互作用的机理,而且对认识全球变暖背景下人类生存环境如何发展具有指示意义。早期研究揭示出东亚大陆气候系统在大约2200万年前经历了行星风系向季风风系的转变,认为东亚季风起源于约2200万年前,并且自该时间以来的东亚季风演变已有较深入的研究。不过,近些年来越来越多的证据显示,在约4000~5000万年前,东亚大陆气候很可能就已受东亚季风系统控制了。然而,由于分布较广并具有良好年代约束的连续沉积记录的缺乏,我们对东亚季风的早期演变过程还不甚清楚。并且,始新世-渐新世之交,南极冰盖开始形成,全球气候整体变冷,地球从之前的“温室状态”进入了之后的“冰室状态”。东亚季风的演化如何响应全球气候的转型或青藏高原的早期隆升,需要有精确年代约束的地质记录来相互对比和检验。 南海作为西太平洋区域最大的边缘海,自形成以来接受了来自周边地块的巨量碎屑沉积,是重建源区古环境古气候信息的良好载体。研究人员选取了国际大洋发现计划(IODP)368航次在南海北部U1501站位钻取的晚始新世至早渐新世沉积(440-300米深度段)作为研究材料,基于微体化石生物带和锶同位素年代学对研究地层的年代约束,通过沉积物中磁性矿物的变化特征来示踪源区的气候变化,进而揭示东亚季风在此期间的演变历史。 结果显示,沉积物中主要的携磁矿物为来自华南东南缘的碎屑(钛)磁铁矿。这些碎屑磁铁矿为源区直接风化侵蚀形成的小颗粒磁铁矿,随后通过地表径流及洋流输送至海洋沉积区。因而,沉积物中这些碎屑磁铁矿的含量和粒度受到地表侵蚀强度和径流强度的影响。在东亚季风区,夏季风主导了区域的降水,更强的夏季风可以造成更强的地表径流和风化侵蚀,可以输送更多并且更粗粒的碎屑磁铁矿。因此,在始新世-渐新世转型后的磁性矿物含量变低和粒度变细很可能指示了东亚夏季风强度的减弱。此外,该站位赤铁矿/针铁矿的比值在始新世-渐新世转型后也呈现了明显降低。已有研究揭示,赤铁矿/针铁矿比值在气候暖湿的环境下较高,在冷干的环境下则较低。因此,本研究推测赤铁矿/针铁矿的比值降低指示了华南气候在始新世-渐新世转型后变得更加寒冷干燥。结合本站位岩芯已有化学风化、物理侵蚀和干湿变化等代用指标,同时综合对比东亚大陆现有的古气候记录,共同揭示出东亚夏季风在经过始新世-渐新世转型后发生了明显减弱,另外还发现夏季风强度在始新世-渐新世转型前存在短暂的增强。 在构造时间尺度,东亚夏季风长期演化的影响因素主要包括青藏高原的隆升、副特提斯海的后撤以及全球变冷。已有模拟研究表明,青藏高原隆升可通过动力和热力效应-增强而不是减弱东亚夏季风,而副特提斯海向西撤退会减少西风水汽对东亚北方区域的影响,但是对华南区域影响较小。因此,始新世-渐新世气候转型期间东亚夏季风的减弱最可能是全球变冷所驱动。冰盖扩展和全球变冷可通过多种过程(如降温引起的大气水汽含量降低、夏季海陆温度梯度差异减小、海平面降低等)来减弱东亚夏季风环流强度。本研究为东亚季风区始新世-渐新世期间的水热循环即温度和降水的协同演变提供了关键证据,同时也对更准确理解始新世-渐新世气候转型的区域响应过程具有重要价值。 论文的第一作者为中国科学院海洋研究所的焦文军博士后,通讯作者为万世明研究员。本研究得到了中国大洋发现计划(IODP-China)、国家自然科学基金、中国科学院战略先导科技专项、泰山和鳌山学者项目的支持。 论文信息: Jiao, W., Wan, S.*, Li, Y., Zhao, D., Liu, C., Jin, H., Li, M., Yu, Z., Zhang, J., Pei, W., & Li, A., 2023. Global cooling-driven summer monsoon weakening in South China across the Eocene-Oligocene transition. Journal of Geophysical Research: Solid Earth, 128, e2023JB027265. https://doi.org/10.1029/2023JB027265.
  • 《中国科学院海洋研究所研究揭示新生代喜马拉雅风化长期增强》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-02-02
    • 近日,国际综合性期刊Science Bulletin在线发表了中国科学院海洋研究所、法国巴黎萨克雷大学、法国岩石与地球化学国家研究中心、自然资源部第一海洋研究所等单位合作的最新研究成果“Enhanced weathering input from South Asia to the Indian Ocean since the late Eocene”。研究团队基于印度洋北部浮游有孔虫钕同位素沉积记录,首次提供了晚始新世以来南亚风化长期增强的关键证据,揭示了喜马拉雅构造隆升及硅酸盐风化增强在新生代全球变冷中的重要驱动作用。 新生代地球气候经历了剧烈的变化:以整体变冷和南北两极相继发育大冰盖为基本特征,而大气CO2浓度的逐渐降低被认为是新生代长期变冷趋势的关键因素。但是,其降低的原因是由于构造活动引起的地球内部排气作用所主导,还是青藏高原隆升-风化/有机碳埋藏所驱动,迄今仍然充满争论。这些假说很大程度上基于数值模拟研究,缺乏可靠量化的新生代风化剥蚀记录,尤其缺少强烈影响全球风化通量平衡的喜马拉雅-青藏高原地区的长期风化记录。因此,建立新生代喜马拉雅长时间序列风化通量演变,揭示其与构造-气候变化的联系,是回答新生代气候变冷问题的关键。 恒河–雅鲁藏布江作为全球沉积物输送量最大的河流系统,新生代向孟加拉湾直接输送了来自喜马拉雅和青藏高原东南部的巨量陆源剥蚀物质。因此,研究人员聚焦于拥有独特地理位置的孟加拉湾,利用国际大洋钻探计划(ODP)758站岩芯中的浮游有孔虫放射性Nd同位素记录重建了晚始新世以来印度洋北部海水Nd同位素的长期演变,并将其与印度洋中部海水钕同位素记录进行对比而剔除印度洋水团影响,其二者差值(ΔεNd)的变化趋势被用以指示来自南亚的大陆风化输入对印度洋的贡献。 浮游有孔虫因其碳酸盐壳上的自生铁锰覆层可以吸附海水中的溶解态Nd,其εNd值代表了该区域底层海水的钕同位素组成。众多研究表明大陆边缘的溶解态Nd同位素特征与大陆剥蚀过程密切相关。孟加拉湾海水εNd值分布呈现出明显的南北梯度,这是由于来自喜马拉雅大河流域(如恒河–雅鲁藏布江河流系统)的陆源输入(εNd: -16至-10)与来自南大洋的水团输入(εNd: -9至-7)具有截然不同的Nd同位素特征所造成,表明了印度洋深层水团与南亚大陆风化输入的二端元混合。 基于此,研究人员提出了一个新的风化指标:ΔεNd(印度洋北部与中部海水εNd差值),利用二者εNd值的差异来指示喜马拉雅陆源Nd输入的相对贡献。第四纪记录表明,间冰期期间南亚季风降水的增多导致喜马拉雅区域更强的风化剥蚀,最终向孟加拉湾释放了更多的陆源Nd输入。因此,冰期-间冰期尺度ΔεNd指标的应用可以为构造时间尺度风化输入的解释提供潜在方法。 ODP 758站有孔虫εNd值呈现长期变负的趋势,且其与同岩芯碎屑组分εNd值和粘土矿物比值蒙脱石/(伊利石+绿泥石)显示出截然不同的长期变化,但在21 Ma、8 Ma、6 Ma和3 Ma显示出与陆源通量相同的增长趋势,这表明758站有孔虫Nd同位素组成不受沉积物物源和风化程度变化的影响,而主要反映了南亚陆源风化的长期输入演变。 研究人员将新指标ΔεNd应用在构造时间尺度上,利用ODP 758站有孔虫重建的晚始新世以来印度洋北部海水Nd同位素组成与铁锰结壳重建的印度洋中部海水Nd同位素记录进行对比,二者差值(ΔεNd)的变化趋势可指示来自南亚的大陆风化输入对印度洋的贡献。结果显示ΔεNd呈现长期增长的趋势,显示了晚新生代南亚风化的长期增强。其中,25-13 Ma和5-0 Ma南亚风化输入的快速增强时期分别对应了晚渐新世-中新世喜马拉雅造山带的快速隆起期和早上新世青藏高原东南部增长与北半球冰盖形成时期,这表明了南亚区域构造与风化的耦合演化。现代观测表明,喜马拉雅源-汇系统主要的河流流域硅酸盐风化每年共消耗~1.6×1012 mol的CO2,约占全球河流硅酸盐风化通量的30%。对比发现,在南亚大陆风化增强期间,大气CO2浓度也显示出整体下降的趋势;与此同时,ΔεNd长期增强与全球海水Li和Sr同位素指示的大陆风化趋势相似。这些证据均暗示喜马拉雅构造隆升引起的硅酸盐风化增强对于晚新生代全球变冷有着重要驱动作用。 本研究是迄今北印度洋地区最长且连续的有孔虫Nd同位素记录,对于理解喜马拉雅构造隆升、风化和新生代气候演化具有重要科学意义。 论文的第一作者为中国科学院海洋研究所博士后宋泽华,通讯作者为海洋所万世明研究员和巴黎萨克雷大学Christophe Colin教授。本研究得到了中国大洋发现计划(IODP-China)、国家自然科学基金、国家重点研发计划、泰山和鳌山学者项目等的支持。 论文信息:Song, Z., Wan, S.*, Colin, C.*, France-Lanord, C., Yu, Z., Dapoigny, A., Jin, H., Li, M., Zhang, J., Zhao, D., Shi, X., Li, A., 2023. Enhanced weathering input from South Asia to the Indian Ocean since the late Eocene. Science Bulletin 68, DOI: 10.1016/j.scib.2023.01.015. https://www.sciencedirect.com/science/article/abs/pii/S2095927323000312