《′′高纯生物精草′′工艺路线与技术:高光学纯L-草铵膦生物制造的创新与发展》

  • 来源专题:现代化工
  • 编译者: 武春亮
  • 发布时间:2024-07-15
  • 来源:《合成生物学》(Synthetic Biology Journal)
    作者:程峰,邹树平,徐建妙,汤恒,薛亚平,郑裕国(浙江工业大学生物有机合成浙江省重点实验室, 浙江工业大学手性生物制造国家地方联合工程研究中心)
    草铵膦是全球三大除草剂之一,具有广谱、活性高、非选择性等特点,市场前景被广泛看好。然而,草铵膦具有两种对映异构体(D型和L型),其除草活性主要来自于其中的L型对映体(L-草铵膦)。因此,高光学纯L-草铵膦高效合成至关重要。
    草铵膦(英文名glufosinate或phosphinothricin;简称PPT)是一种氨基酸类除草剂,其历史可以追溯到1972年德国科学家从链霉菌发酵液中分离得到了一种具有除草活性的三肽化合物——双丙氨膦。他们对其结构鉴定,发现该三肽是由两分子L-丙氨酸以及一种当时还未知的氨基酸构成。
    而后,赫斯特公司采用化学法合成了这种未知氨基酸,并命名为草铵膦;同时,发现这种天然氨基酸具有非常好的除草活性。其原理是草铵膦在分子结构上与谷氨酸非常相似,故草铵膦与谷氨酰胺合成酶的活性位点可发生可逆结合,抑制了谷氨酰胺合成途径,导致植物体内氮代谢紊乱造成铵过量积累、叶绿体解体,从而使光合作用受抑制,最终导致植物死亡。
    近年来,随着耐草铵膦转基因作物新品种的开发与推广,加上草甘膦抗性杂草的增加及百草枯的禁用(百草枯对人体毒性极大,且无特效解毒药)。草铵膦作为一种广谱、高效的非选择性除草剂获得了巨大的发展空间,2022年其市场规模超10亿美元,已成为全球第二大除草剂、用量最大的手性除草剂。随着新生代转基因的渗透、百草枯的禁用替代和复配制剂的增加,草铵膦需求量不断增加,其制造技术也不断发展,下面就D,L-草铵膦的主流生产工艺进行总结与分析。
    1
    D,L-草铵膦的主流生产工艺
    D,L-草铵膦生产工艺壁垒较高,目前全球主要有三条草铵膦产业化生产路线:即热裂解-ACA工艺(简称′′气相合成′′)、铝法-Strecker工艺(简称′′铝法合成′′)、格氏-Strecker工艺(简称′′格氏合成′′)。但普遍面临反应条件要求高、工艺复杂、过程控制难度大、成本较高等问题,目前国内仅少数公司能实现规模化稳定生产。三种工艺方法在合成方法原理上有其相似之处,但在原材料成本、过程损耗、环保友好性和收率等方面区别较大。
    1.1 热裂解-ACA工艺
    热裂解-ACA工艺,主要分为3个步骤:1在高温下以甲烷和三氯化磷为原料热裂解制备甲基二氯化膦(MDP),再与正丁醇制备甲基亚膦酸单正丁酯(MPE);2丙烯醛在低温下一步制得丙烯醛氰醇乙酸酯(ACA),该步收率可达96%;3MPE和ACA在过氧特戊酸叔丁酯(BPP)引发下进行Michael加成反应制备(3-乙酰氧-3-氰丙基)-甲基膦酸正丁酯,最后通过胺化水解得到D,L-草铵膦铵盐。该工艺总收率较高,经济环保(图1A)。
    国内外许多研究团队都对该路线进行了深入研究,浙江工业大学是国内较早开展MDP化学合成研究的科研院校,采用氯甲烷为甲基供体合成MDP,转化率达81.3%。产业化方面,热裂解-ACA工艺由德国公司率先研发成功并实现了连续化生产,具有自动化程度高,反应过程中无溶剂、无气味,几乎无渣排放,胺化和水解后的水相都可以蒸发回收、套用等优点。整个工艺中最关键的核心技术和难点是中间体MDP的制备,这也是合成含磷农药的重要中间体。以气相连续法合成MDP技术壁垒最高,虽然该工艺已过了专利保护期,但因工艺标准要求极高(需要在600°C以上高温下气化裂解来制备MDP、高温反应时会产生固体沉积物吸附在反应器壁上等),国内仅极少数企业能够运用该工艺进行D,L-草铵膦的量产。
    1.2 格氏-Strecker工艺
    格氏-Strecker工艺相较热裂解-ACA工艺省去了热裂解步骤,工艺简单、成本较低,是我国企业普遍采用的工艺之一。该工艺通过格氏法合成关键中间体亚磷酸二乙酯:具体是利用乙烯利的前体亚磷酸三(2-氯乙基)酯,与三氯化磷酯交换,制得二(2-氯乙氧基)亚磷酰氯,再与甲基溴化镁格氏反应得到甲基亚膦酸二乙酯。而后,丙烯醛与乙醇生成的缩醛与甲基亚膦酸二乙酯发生Michael加成反应,酸化后得到3-乙氧基甲基膦酰基丙醛,加入氰化钠、氯化铵和氨水发生Strecker反应得到氨基腈,最后水解、胺化和纯化得到草铵膦铵盐,该工艺所得草铵膦的纯度可达95%,总收率在30%左右(图1B)。尽管该工艺路径较为简单,易于实现工业化生产,然而同时也存在安全隐患大(用到氰化钠等剧毒物质)、分离纯化难度大(导致废水量大)、收率不高(总收率低)等问题。
    1.3 铝法-Strecker工艺
    铝法-Strecker工艺是国内企业在格氏-Strecker工艺基础上开发的生产工艺。与格氏-Strecker工艺不同,该法通过一氯甲烷、三氯化磷和三氯化铝络合/解络的方法制备甲基二氯化膦(MDP),由MDP制备甲基亚膦酸二乙酯,后经Strecker反应、水解、胺化得到草铵膦铵盐(图1C)。该工艺减少了对设备的投资,综合成本较′′格氏-Strecker工艺′′低,但存在反应过程危险(原料三氯化磷易燃易爆)、三废问题严重(分离纯化困难产生大量固废和废水)等问题,已引起了环保部门的关注。该工艺相较于′′格氏合成′′的一个优势是前段工艺合成了MDP,待企业技术成熟后可灵活采用′′热裂解-ACA工艺′′的热裂解工艺合成MDP。
    1.4 D,L-草铵膦三种生产工艺比较
    本文从连续化程度、工艺优劣势、三废排放、生产成本等方面对三种D,L-草铵膦生产工艺进行比较(表1)。总体而言,′′气相合成′′的生产连续性化程度高、三废排放少(环境友好)、成本具有优势,是3种工艺中最具竞争力的工艺路线。但是该工艺的实际难度较大,对反应装置的要求高,目前国内仅极少数企业具备该工艺生产能力。′′铝法合成′′与′′格氏合成′′合成草铵膦的工艺已日趋成熟,在多家企业实现产业化,但仍存在各种问题:1)与′′气相合成′′相比,′′铝法合成′′与′′格氏合成′′的产品收率较低,因此成本较高;2)′′铝法合成′′与′′格氏合成′′工艺涉及化工产品多且流程复杂,大多数化工原料易燃易爆,存在安全隐患,尤其是格氏试剂和氰化钠,这两个工艺中的多个单元都需保证无水无氧的环境;3)Strecker反应合成路线较长,细分下来有蒸馏、精馏、过滤、离心等十几个操作单元,而每个单元都会产生相应的′′三废′′,较难处理,环保压力较大;4)目前′′铝法合成′′与′′格氏合成′′工艺中的关键中间体甲基亚膦酸二乙酯纯度偏低,仅为70%;5)′′铝法合成′′与′′格氏合成′′工艺连续化程度低,而′′气相合成′′工艺已实现连续化生产,自动化程度高。
    2
    L-草铵膦的生物制造
    草铵膦以外消旋体形式上市以来,多国科学家在实验室水平研究其不同对映体的功效和毒性,发现D-草铵膦、L-草铵膦的除草能力差别巨大。笔者研究团队经过20多年研究,开发成功′′高纯生物精草′′,在中国生物农药之父沈寅初院士的指导下,建立了基于酰胺酶、脱乙酰基酶、氨基酸氧化酶、脱氢酶、还原胺化酶、酮酸转氨酶、腈水合酶、腈水解酶等生物催化技术以及从头合成的合成生物学技术制备L-草铵膦路线,成为当前有关L-草铵膦研发获得发明专利授权和学术论文发表最多的单位。2016年,浙江工业大学联合国内多家企业,利用生物法合成的高纯L-草铵膦、D-草铵膦,在海南省进行田间除草对比试验,在大田试验水平证明:1倍当量L-草铵膦能够达到2倍当量D,L-草铵膦用量的除草效果。这些研究为L-草铵膦的应用奠定了基础,揭示其良好的市场前景。因此,L-草铵膦的推广能够降低50%施药量,全球每年可直接减排数万吨的无效体(低效体)D-草铵膦,有效减轻农田耕作过程中无效化学物质的使用及对环境造成的负担,符合国家农药减量增效政策。
    各国农药制造企业尝试开发了外消旋体拆分法、不对称合成法、天然氨基酸手性源法、手性辅助剂诱导等方法化学合成L-草铵膦,但由于立体选择性低、产物收率低、生产成本高等因素,始终没能进行大规模生产。例如,日本明治制果公司利用不对称Strecker反应、经酸性水解转化得到含氯离子的L-草铵膦,主要用于高档瓜果、花卉等经济作物的除草,改进L-草铵膦的化学合成,但由于产品生产成本高,含氯易引起土壤板结,很难大规模推广应用。
    生物法合成L-草铵膦具有反应条件温和、立体选择性高等优点。笔者研究团队经过20多年的研究,与多家企业合作,开发了以下五大工艺路线与技术。路线1:混旋体衍生化-拆分路线;路线2:利用外消旋D,L-草铵膦为底物的混旋体合成-去消旋化路线;路线3:通用化合物氰基化再水解路线;路线4:从常用化学品合成L-草铵膦路线;路线5:从头合成高丝氨酸再化学合成L-草铵膦。下面就这些工艺路线进行详细分析。
    2.1 混旋体衍生化-拆分路线
    混旋体衍生化-拆分路线是生产氨基酸的常用工艺路线。生物拆分法的底物通常是氨基酸化学法衍生后的产物,利用酶催化拆分外消旋草铵膦衍生物得到光学纯氨基酸。针对L-草铵膦具体来说,可以从外消旋的草铵膦出发,制备(苯)乙酰化外消旋草铵膦,再以N-(苯)乙酰-PPT为底物,以高催化活力和高对映体选择性固定化酶为生物催化剂,进行动力学拆分合成得到光学纯的L-草铵膦(图2),固定化酶可以重复使用100次以上,使用成本低,企业无需建设大吨位的发酵产酶装置。但通常生物拆分法的最大理论转化率仅为50%,为了突破该限制,笔者研究团队开发了(苯)乙酰衍生化PPT新方法和针对DN-(苯)乙酰-PPT的化学消旋法,从而构建了一种基于动力学拆分的L-草铵膦合成路线,在实际应用中产物得率大于90%,产物ee值>99%。
    2.2 以外消旋D,L-草铵膦为底物的混旋体合成去消旋化路线
    该路线是在生产D,L-草铵膦后,通过生物拆分或生物去消旋等方法获得L-草铵膦。具体又可分为混旋体合成-生物氧化-生物有机胺胺化和混旋体合成-生物氧化-生物无机氨胺化两类。针对两类的共同步骤生物氧化,笔者研究团队开发了一种′′通道-口袋′′的理性分子改造工程,根据底物通过通道进入口袋的顺序进行突变热点的选取并依次进行迭代饱和突变,成功实现了D-氧化酶对酸性非天然底物的高效选择性氧化,并通过分子动力学模拟等手段为通道-口袋残基的突变如何控制底物结合并最终影响生物氧化效率提供新见解。
    2.2.1 混旋体合成-生物氧化-生物有机胺胺化
    生物氧化-生物有机胺化是生物去消旋合成LPPT的有效方法,首先通过生物氧化选择性将外消旋草铵膦中的D-PPT转化为酮酸,同时保留另一半的L-PPT;然后再通过转胺反应将酮酸都转化为L-PPT。通过对氧化酶和转氨酶的筛选,这一路线已在国内外实验室和企业获得成功。笔者研究团队构建的生物氧化-生物有机胺化反应体系可实现D,L-PPT的完全去消旋化(转化率100%)。类似地,国内浙江大学、美国AgriMetis公司也开发了基于氧化酶和转氨酶的生物氧化-生物有机胺化催化技术,2020年9月,AgriMetis宣布将其Glu-LTM除草剂的专利技术出售给巴斯夫。′′生物去消旋′′路线也可以利用双转氨酶实现,利用转氨酶I将DPPT转化为酮酸,再利用转氨酶II不对称胺化酮酸到L-PPT。但是,基于转氨酶的生物有机胺化去消旋化技术都需要大量的有机胺供体(如丙氨酸、天冬氨酸、谷氨酸等)来推动反应的进行,并且很难达到100%的底物转化,并且这些胺供体的物化性质与L-PPT非常相似(如谷氨酸和L-PPT均为小分子酸性氨基酸),在工业上很难分离纯化。为此,浙江大学Zhou等人通过结合谷氨酸脱氢酶等酶开发了一个三酶级联反应系统。将副产物回收到氨供体L-谷氨酸中,同时使用醇脱氢酶进行辅酶再生,一定程度上减少了难分离的杂质量。
    2.2.2 混旋体合成-生物氧化-生物无机氨胺化
    如何能突破生物有机胺化的限制,利用廉价的无机氨作为氨基供体呢?(图3)为此,笔者研究团队发明基因挖掘新方法,发现、命名、解析了第一个草铵膦脱氢酶(率先解析了其晶体结构,PDB数据库登记号为8I83),发明′′多性能协同进化′′生物催化剂改造方法,通过分子改造等手段创制高活力、高选择性、高稳定性的工业催化剂,能高效生成L-草铵膦;并进一步发明工业适配负载型无机胺化催化剂,设计、组装和优化阐明反应模块,强化定向合成过程,时空产率创记录。建立了适配的辅酶自足型细胞工厂匹配定向合成过程,即使在高浓度底物条件下,多酶定向合成反应仍可以在短时间内转化完全底物。实现L-草铵膦的高效生产(底物转化率100%,无中间物残留,产物ee值近100%)。
    2.3 通用化合物氰基化再水解路线
    在D,L-草铵膦中,′′格氏合成′′和′′铝法合成′′都会生成共同的中间体α-氨基腈(即2-氨基-4(羟乙基甲基磷酰基)-丁腈)。理论上立体选择性腈水解酶能转化α-氨基腈合成L-草铵膦酯,再通过酯水解就可以生产L-草铵膦(图4),是L-草铵膦合成的理想途径之一。笔者研究团队通过菌种筛选,获得了含有腈水解酶的粘质沙雷氏菌,以该菌作为生物催化剂,可以转化氨基腈生成L-2-氨基-4(羟乙基甲基磷酰基)-丁酸酯,进一步通过酯水解或化学水解、铵化,可获得L-草铵膦铵盐。进一步,通过研究酶序列与解析腈水解酶失活机制,鉴定腈水解酶的底物-溶剂通道,对酶进行分子改造,增强其在工业环境下的活性和耐CN-、耐盐的稳定性;并进行化学合成氨基腈模块与生物合成L-草铵膦模块的对接,构筑了高强度L-草铵膦绿色生物制造工艺。
    通过L-草铵膦的生物合成创新,结合笔者研究团队已完成的腈水解酶介导的R-扁桃酸和加巴喷丁的生物制造产业化工作。笔者研究团队阐明了选择性工业腈水解酶科学发现的方法学原理,发现了一系列高效选择性腈水解酶,建立了国际上种类最多的选择性腈水解酶工业酶库和菌种库。阐明了选择性腈水解酶理性设计的分子基础,通过创新腈水解酶′′人工合成底物口袋结构重塑′′等分子设计新方法,进化出迄今为止工业属性最强的选择性腈水解酶,服务于腈化合物的选择性水解。
    2.4 从常用化学品合成L-草铵膦路线
    该路线是一条创新的工艺路线,利用常规化学品开发草铵膦脱氢酶的新型底物,并结合创制的′′草铵膦脱氢酶′′及构筑辅酶再生体系,高效进行无机氨胺化反应生成高光学纯L-草铵膦(e.e.>99%)。进一步,针对多酶反应条件不匹配、动力学参数不匹配、蛋白表达不匹配,发明了多酶同步共进化策略,快速增加多酶耦合效率从30%提高到90%(图5)。为了提高氧化还原反应的辅酶供给,又进一步通过代谢途径改造,提高底盘细胞辅酶积累量设计并构建与还原胺化过程匹配的微生物底盘细胞,实现了生物合成与底盘细胞的高效匹配;并应用′′从常用化学品合成L-草铵膦路线′′,实现了底物到L-PPT的完全定量转化(转化率100%),且产物ee值近100%。
    2.5 从头合成高丝氨酸再化学合成L-草铵膦
    以上的三条路线(混旋体衍生化-拆分、混旋体体合成-氧化-胺化、通用化合物氰基化再水解)均直接或间接与D,L-草铵膦生产工艺对接,而生物制造L-草铵膦还可以通过发酵生产L-高丝氨酸后进行多步化学合成获得(图6)。因此,发酵法生产L-高丝氨酸成为近年来的研究热点。然而,利用生物法合成L-高丝氨酸仍存在一些不足之处,如发酵产量不高或糖酸转化率过低等。为此,国内外研究团队在底物利用、代谢途径中关键节点的改造、代谢途径中反馈抑制的解除、辅酶NAD(P)H的循环供应、产物外运系统的增强等方面已开展了大量研究工作。例如,中国科学院微生物研究所系统地分析了大肠杆菌中L-高丝氨酸的代谢网络,设计了一条由葡萄糖发酵高产L-高丝氨酸的辅酶平衡路线,构建了一株L-高丝氨酸高产菌株,在补料分批发酵中L-高丝氨酸产量达到84.1g/L。笔者研究团队在敲除磷酸酶转移系统的大肠杆菌中引入半乳糖渗透酶系统(galP-glk系统),发现过表达galP,并且利用原位启动子替换将glk启动子替换为Ptrc启动子后,可以增强菌体对葡萄糖的利用率,稳定菌体生长,提高L-高丝氨酸产量,摇瓶中L-高丝氨酸产量提高了19%。而以蔗糖为底物发酵合成L-高丝氨酸的研究,在大肠杆菌中过表达蔗糖代谢基因scrA、scrB和scrK,发现菌株在摇瓶中的高丝氨酸产量提高3.4倍。
    2.6 L-草铵膦生产技术比较
    涉及D,L-草铵膦与氨基腈的合成路线都是在现有D,L-草铵膦工艺上的进一步发展与衍生,因此这两种路线既对现有D,L-草铵膦/氨基腈工艺提出高要求,又要求后续生物制造过程简便、清洁、成本可控。根据成本计算和工艺分析,′′气相合成′′耦合′′多酶定向合成技术′′技术非常适合于有能力生产D,L-草铵膦的企业,可以合成高纯度L-草铵膦粉剂。浙江工业大学利用该技术实现D,L-草铵膦合成L-草铵膦的100%去消旋化。′′从常用化学品合成L-草铵膦路线′′需要创新化学工艺与′′生物无机胺化′′技术的对接。此外,′′高丝氨酸′′路线主要取决于高丝氨酸的发酵水平和后续化学合成的工艺,如何提高发酵过程中的糖酸转化率和发酵产量是其关键。
    总体来说,L-草铵膦合成路线较多,技术含量高(表2)。所涉及到的酶很多,有腈水解酶、酰化酶、氧化酶、脱氢酶、转氨酶等等,涵盖5大酶系;关键的胺化过程可以分为生物有机胺化和生物无机胺化,前者需要过量的有机胺,不利于分离纯化,而后者利用无机铵,具有很好的工业属性;再次,不同路线对应的底物不同,这对化学合成模块与生物合成模块的对接提出了很高的要求。
    3
    辅酶再生体系的创新与发展
    如果设计生物氧化还原反应合成L-草铵膦,则需要在反应体系中增加还原型辅酶NADH或NADPH提供还原力。考虑到成本问题,工业上不可能在反应体系中添加等化学计量的NAD(P)H,构建高效的辅酶循环系统来替代辅酶的大量添加,是很好的解决途径。在酶法、光化学法、电化学法和化学法等四种方法中,酶法具有效率高、环境友好、选择性高等特点,被广泛应用于生物制造过程中辅酶NADH/NADPH的再生。主要有三种酶,即葡萄糖脱氢酶(GDH)、甲酸脱氢酶(FDH)和醇脱氢酶(ADH),基于这三种酶的辅酶循环系统特点总结于表3。葡萄糖脱氢酶是一种短链脱氢酶,为同源四聚体,存在于细菌和古细菌中,其优势在于其底物葡萄糖价格低廉,且该酶催化效率高,对NAD+和NADP+均有活力;葡萄糖脱氢酶辅酶再生系统在催化过程中不断将葡萄糖氧化为葡萄糖酸,致使体系的pH下降,故需在反应过程中调节pH;其次,要获得高纯度的L-草铵膦原药,需要去除用GDH引入的副产物葡萄糖酸,需要进一步进行分离纯化。FDH主要来源于细菌、酵母与植物,其优势在于其能够利用无毒害的甲酸作为NADH再生的氢供体,且甲酸盐的氧化反应不可逆,副产物CO2具挥发性,很容易从生物反应体系排出,避免后续副产物的分离。甲酸脱氢酶辅酶再生系统的主要限制因素是其催化性能较低(大多数天然FDH的kcat/Km?1s?1)、底物亲和力较差(Km>10mM)、对于NADP+的特异性差((kcat/Km)NADP+/(kcat/Km)NAD+,通常低于30),因而应用受到限制。笔者研究团队通过解析甲酸脱氢酶辅酶选择性、酶活、稳定性机制,利用′′祖先序列重构′′、′′多性能协同进化′′等手段,创制了高选择性、高酶活、高稳定性的甲酸脱氢酶,克服了′′鱼和熊掌不可兼得′′的′′trade-off′′效应,建立了适合高光学纯L-草铵膦等手性氨基酸合成的生物催化体系。ADH能够可逆地催化醛和酮选择性还原为伯醇和仲醇,主要应用于酮类的不对称还原,但氧化反应也有报道。醇脱氢酶通常将异丙醇作为辅酶再生的底物,将其氧化为丙酮,同时将NAD(P)+还原为NAD(P)H。其优势在于其底物异丙醇经济易得,且副产物丙酮沸点低,易于除去;但由于反应可逆,需添加过量的底物来促进反应进行,高浓度的有机溶剂虽然一定程度上可以助溶,但却可能抑制反应体系中其他酶类的活性。
    从上述分析中,我们可以发现L-草铵膦的生物制造涉及的反应类型有腈化、水解、脱胺、转胺、加成、缩合、拆分、氧化、还原、取代;生物催化剂有耐CN腈水解酶、水合酶、酰胺酶、酰化酶、脱乙酰基酶、氨基酸氧化酶、草铵膦脱氢酶、还原胺化酶、酮酸转氨酶、腈水合酶等多品种酶的级联和耦合;而工业化装备更是包括高密度生物发酵罐、陶瓷膜、氧气循环反应装置、酶膜反应器;连续流微通道反应器、连续流管式反应器、连续流釜式反应器等等,是一个综合创新的集中体现。进一步,因为草铵膦的需求量大,无论采用生物酶/细胞催化还是发酵介导的L-草铵膦生物制造方式都需要进行吨级发酵。笔者研究团队通过发酵模式和诱导方式的创新,增加单细胞内多酶可溶性表达量;提出了pH恒定补料反馈补料发酵策略,过程更具成本和环保优势;在5吨、50吨发酵罐上实现多基因共表达工程菌的规模化发酵生产,催化剂单位体积酶活和L-高丝氨酸的糖酸转化率均达到文献报道最高水平。
    4
    展 望
    D,L-草铵膦作为外消体已经上市近30年,随着百草枯的禁用和耐草铵膦转基因作物的推广,其市场前景被不断看好。根据实验室和大田试验的结果表明:绝大部分除草活力来自于L-草铵膦,而D-草铵膦基本没有除草活性,是一种环境负担物质。随着草铵膦用量的增加,每年可能会有几万吨的D-草铵膦污染。因此,发展L-草铵膦替代D,L-草铵膦对我国农药实现增效减量将起到极大的推动作用。而生物制造技术以其特有的高立体选择性、反应条件温和等特点,吸引了众多科技工作者开发L-草铵膦生物制造技术。目前已形成多种工艺路线,其中,利用外消旋D,L-草铵膦为底物的混旋体合成-去消旋化路线适用于已掌握了′′气相合成′′D,L-草铵膦的企业,成本低,三废排放少,产品对土壤友好,具有很强的市场竞争力;而从头合成L-草铵膦则比较适合于合成生物相关企业。因此,笔者认为这四条路线在不同类型企业会展示出不同的潜力,真正实现大规模工业化后,究竟那条路线的成本和环保优势最明显,需要充分考虑底物/中间体合成成本、底物/中间体和辅底物的回收利用、酶活力和立体选择性、产物分离纯化、副产物的回收利用、生产线的数字智能化控制水平等方面的综合因素。
    笔者研究团队进行20多年单一高活性手性农药的创制研发,开发了三代农药手性生物合成技术,可喜的是合作企业根据自身基础,建成了各具特色、数字智能化控制水平高的年产万吨级高光学纯手性农药L-草铵膦的生产线,开发了三维参数传感联动技术,解析工程放大规律;研究工业反应体系下微环境、能量流、物质流对多酶催化反应过程放大的影响规律,优化大型反应器流场分布,提高生产效率;利用智能传感器和执行器,实现超千个控制点的实时数据采集、传输、分析和反馈调节,全自动化参数采集与控制生产效率提高50%,降低劳动强度降低70%以上。推动了国内众多农药龙头企业的手性农药登记,也促进了系列手性农药产品标准的制定,提升了我国精细化学品的生产制造水平
    查看全部内容
  • 原文来源:http://cn.agropages.com/News/NewsDetail---32078.htm
相关报告
  • 《2024年除草剂专利授权汇总:涉及草甘膦、精草铵膦、砜吡草唑和唑啉草酯等上百种产品》

    • 来源专题:绿色化工
    • 编译者:武春亮
    • 发布时间:2025-03-10
    • 2024年我国除草剂领域的专利授权数量显著增长,涵盖了化合物合成、中间体制备、组合物制剂以及新型潜力化合物等多个方面,这不仅反映了行业的蓬勃发展态势,也彰显了企业在技术创新和知识产权保护方面的高度重视。 注:本文仅整理农药产品应用发明专利的授权情况,对农药合成装置、具体农药产品废水处理、尾气回收以及农药含量检测方法等类型的授权专利不包含在内。 新型除草剂潜力化合物专利 AgroPages世界农化网不完全统计发现,2024年我国共有超过72项新型除草剂潜力化合物专利获得授权,涵盖约69种不同结构的化合物。专利发明授权公告表明,这些化合物在除草活性和作物安全性方面均表现出色,具有显著的应用潜力。 在2024年获得专利授权的新型除草剂潜力化合物中,跨国公司及其他国外公司共申请了30项,占比达43.5%。其中,先正达公司表现最为突出,共获得17项专利授权,涵盖14种化合物结构;其次是拜耳公司,获得7项专利授权。此外,富美实、巴斯夫、科迪华、韩农等跨国企业也均有除草剂专利在我国获得授权。 与此同时,国内农药企业以及高校和科研机构在2024年授权的新型除草剂潜力化合物专利中占据主导地位。扬农、清原、先达、海利尔等国内知名农药创制企业表现不俗,均在该领域取得了重要成果。此外,浙江工业大学、南开大学、华南农业大学、中国农业大学等科研院校也取得了多项新型除草化合物专利授权。 原药/中间体化合物合成专利 除草剂原药化合物合成制备方面,2024年不完全统计授权了43项专利,其中与草甘膦、L-草铵膦、砜吡草唑相关的除草剂专利总数接近半数。除此之外,其他如草铵膦、氰氟草酯、苯嗪草酮、2,4-滴、苯草醚、硝磺草酮和敌稗数十种除草剂化合物也有多项专利申请被授权。 草甘膦原药制备方法方面,兴发集团子公司湖北泰盛化工有限公司在草甘膦生产技术领域取得了3项发明专利授权(CN115232167B、CN115746052B、CN115784900B),涵盖了连续化合成、三乙胺纯化及优化水解工艺。安徽东至广信农化有限公司2项专利涉及草甘膦原药的制备,专利CN113402549B通过添加磷酸酯两性表面活性剂优化合成工艺,提高收率和纯度;专利CN114031637B则提供了一种草甘膦连续水解方法,使用改性载体负载对甲苯磺酸作为酸性催化剂,从源头避免氯盐生成降低能耗。江山股份取得的专利CN110407870B公开的草甘膦制备方法采用微通道反应器实现连续化生产,提高传质传热效率,减少副反应,提升产品纯度和收率。 在L-草铵膦(精草铵膦)原药制备授权专利中,利民股份子公司河北威远生化和永农生物等企业提出的合成方法具有显著的创新性和应用价值。例如,河北威远生化的专利CN115636849B提出了一种以L-高丝氨酸为原料的合成工艺,通过氯化、膦酰化和水解反应,将传统五步反应简化为三步,显著提高了生产效率,产品收率可达90%以上,纯度可达97%以上。专利CN115896195B则采用生物酶催化技术,通过D-氨基酸氧化酶和氨基酸脱氢酶的联合应用,实现了从外消旋草铵膦到L-草铵膦的高效转化。实验结果显示,该方法制得的L-草铵膦的收率可达98%以上,光学纯度(ee值)达到100%。永农生物取得的L-草铵膦制备方法专利CN114989213B,通过特定的中间体化合物和自由基引发剂(如过氧化新戊酸叔丁酯),在较低温度(75℃)下实现高收率和高光学纯度的L-草铵膦合成。利尔化学专利CN114650997B等其他几项制备合成专利也分别聚焦于L-草铵膦的合成技术,提出了多种创新方法。这些专利技术不仅在实验室层面表现出色,部分还具有显著的工业化应用潜力。通过简化工艺、降低成本和减少环境污染为L-草铵膦的高效生产提供了新的思路。 近几年砜吡草唑市场需求和热度持续攀升,其合成工艺的研究也日益受到关注。2024年多家企业围绕砜吡草唑的合成创新性改进方法取得授权,从不同的角度出发解决现有合成技术中存在的障碍。例如,江苏七洲绿色化工股份有限公司的专利CN117229273B和定远众邦生物工程有限公司的专利CN114716429B注重环保和绿色化学,通过优化反应条件和催化剂,减少了废弃物的产生。山东润博生物科技有限公司和潍坊新绿化工有限公司的专利CN115850254B、CN117924265B,则侧重于提高反应效率和产物纯度,通过高效的催化剂和连续化操作,实现了高收率和高纯度的目标。吉林凯莱英医药公司的专利CN118255757B通过多个连续工序(环化、羟甲基化、二氟甲基化、氯代、缩合和氧化),解决了传统间歇工艺中传质传热能力差、反应时间长、收率低等问题,具有显著的工艺优势和环保效益。 作为农药原药合成过程中不可或缺的关键化合物,农药中间体的合成工艺研究是原药企业实现降本增效、提升产业链竞争力的重要环节。2024年,包括精草铵膦、砜吡草唑、唑啉草酯、甲磺草胺和氟噻草胺、苯嘧磺草胺在内的数十种农药原药的关键中间体化合物专利获得授权。 下表中统计了3项分别针对精草铵膦合成中间体(S)-4-氯-2-氨基丁酸酯、乙酰-L-高丝氨酸内酯和L-4-氯-2-氨基丁酸酯类盐酸盐的制备方法,通过优化合成工艺提高了生产效率,适用于工业化生产。 砜吡草唑合成过程中涉及多种关键中间体的制备。不完全统计显示,2024年至少有3家企业的5项砜吡草唑关键中间体制备专利获得授权。其中,山东润博生物科技(CN115536650B)和江苏七洲绿色化工(CN117229273B)的专利均涉及中间体3-[[5-(二氟甲氧基)-1-甲基-3-(三氟甲基)吡唑-4-基]甲基磺酰基]-5,5-二甲基-4H-1,2-噁唑的合成,但两者在反应条件和催化剂选择上有所不同。而润丰股份CN114716428B则聚焦于另一种中间体4-(((5,5-二甲基-4,5-二氢异噁唑-3-基)硫)甲基)-1-甲基-3-(三氟甲基)-1H-吡唑-5-醇的合成。 2024年唑啉草酯的中间体制备领域有5项专利获得授权,涉及不同企业的技术创新。例如,浙江中山化工(CN114181112B)开发了一种无需昂贵钯催化剂的2,6-二乙基-4-甲基苯基丙二腈合成方法;利尔化学(CN113321583B)以2,6-二乙基-4-甲基苯丙二腈为原料,通过有机溶剂中的酸催化醇解反应制备2,6-二乙基-4-甲基苯基丙二酸二酯,具有较高的收率和纯度。而颖泰嘉和(CN114907181B)通过连续化装置实现了中间体2,6-二乙基-4-甲基溴苯的高效、安全合成,传统间歇法中重氮盐累积带来的安全隐患。 2024年,氟噻草胺合成中间体的制备技术也取得了创新,多项相关专利获得授权。例如,北京颖泰嘉和(CN115043791B)针对核心前体2-甲砜基-5-三氟甲基-1,3,4-噻二唑的合成,采用微通道反应器实现连续化生产,显著提升了反应效率和安全性。黑龙江立科新材料(CN113666829B)则在起始原料4-氟-N-异丙基苯胺的合成上,通过优化反应条件和催化剂选择,大幅提高了收率和纯度。此外,大连奇凯医药(CN116041200B)对直接前体N-(4-氟苯胺)-2-羟基-N-异丙基乙酰胺的合成工艺进行了创新,解决了传统方法中高盐废水和收率低的问题。 本年度,除上述几个热门除草剂的中间体化合物合成制备上授权专利较多外,苯唑草酮、甲磺草胺、丙炔氟草胺、五氟磺草胺、苯嘧磺草胺等农药也分别有2-3项专利技术被最新授权。例如颖泰嘉和在甲磺草胺的中间体制备上取得了两项专利CN114634454B、CN114456122B,分别从合成路径优化和 硝化工艺创新两个角度,解决甲磺草胺中间体制备中的关键问题。利尔化学和山东京博农化各新取得一项授权专利——CN113045424B、CN113929582B,均针对丙炔氟草胺关键中间体——2-(5-氟-2-硝基苯氧基)乙酸酯的合成方法进行了创新优化。专利CN115028596B和CN118788251B分别针对苯唑草酮一种重要中间体和关键中间体3-[3-溴-2-甲基-6-(甲基磺酰基)苯基]-4,5-二氢化异噁唑,提供了不同的技术路线和工艺优化方案。 除草剂组合物/制剂专利 除草组合物专利是数量最多的授权类别,据世界农化网不完全统计整理,2024年有近百项除草组合物专利获得授权,显示出该领域的研发活跃度。 从具体农药成分来看,2024年获得授权的组合物专利中,砜吡草唑、草甘膦、草铵膦、精草铵膦、环庚草醚、精异丙甲草胺、丙炔氟草胺、氯氟吡啶酯等成为主要的复配研究成分。其中,砜吡草唑表现尤为突出,以该成分为核心的相关专利多达9项,主要涉及其与特丁津、甲磺草胺、嗪草酮、异丙隆、氨唑草酮、嘧硫草醚、吡氟酰草胺+噁草酮、唑嘧磺草胺、五氟磺草胺、双苯嘧草酮等的混配研究。这些组合物通过优化配比及助剂体系,充分发挥了协同增效作用,不仅延长了持效期,还显著提升了对不同环境条件的适应性,其应用场景广泛覆盖小麦田、大豆田以及抗草甘膦牛筋草的防治等领域。 此外,草甘膦的混配组合成分主要包括乙氧氟草醚、三氯吡氧乙酸、增甘膦、苯嘧磺草胺等;草铵膦的混配组合成分则以丙炔氟草胺、丙炔草酸为主;精草铵膦的混配组合成分涵盖双唑草酮、甲氧咪草烟、苯唑草酮、丙炔氟草胺+精异丙甲草胺等。这些混配组合均针对特定作物和杂草类型进行了优化,进一步拓展了除草剂的应用范围和效果。 从申请企业/专利权人来看,润丰股份在2024年取得了最多的除草剂组合物专利授权,共计14项。其专利权人包括母公司及旗下子公司宁夏汉润、山东润博、青岛润农等,涵盖了2甲4氯异辛酯、砜吡草唑、甲磺草胺、精异丙甲草胺、莠去津、敌稗及嗪草酮等数十种成分之间的二元/三元混配组合。部分组合还申请了不同剂型的专利,进一步增强了产品的市场竞争力。此外,巴斯夫基于环庚草醚与不同作用机理的除草剂进行复配研究,并于2024年取得了6项相关组合专利。江苏龙灯化学也取得了多项以丙炔氟草胺为主要成分之一的组合物专利,进一步丰富了该成分的应用场景。 值得注意的是,2024年一些新型专利化合物也有多项组合物专利取得授权,例如,江山股份开发的创制苯嘧草唑获得了基于该产品的可分散油悬浮剂及其制备方法专利(CN115281212B)。双唑草酮的组合专利除原研企业青岛清原外,江苏钟山新材料有限公司也取得了一项将精草铵膦与双唑草酮复配的组合物制备及应用专利。其他国内企业也在提前积极布局相关专利期农药的复配研究,例如,安徽众邦生物工程有限公司等多家企业在2024年取得了基于科迪华专利化合物氯氟吡啶酯的组合物专利,主要是将其与吡唑喹草酯、五氟磺草胺+丙草胺、五氟磺草胺+异恶草松、氰氟草酯+吡嘧磺隆等进行复配组合研究,进一步拓展了该化合物的应用范围。此外,日本石原开发的新型HPPD类除草剂Tolpyralate,江苏瑞邦取得了一项含Tolpyralate和甲磺草胺的除草组合物及其应用专利,复配后杂草防除谱优势互补,对玉米田阔叶杂草、禾本科杂草及莎草科杂草均表现出良好的防除效果。
  • 《内蒙古通威高纯晶硅项目顺利投产 加速领跑实现高纯晶硅“中国制造”》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-11-01
    • 10月31日,内蒙古通威高纯晶硅项目投产仪式在包头市昆都仑区隆重举行。包头市委副书记、市长赵江涛,十一届全国政协常委、全国人大代表、通威集团董事局刘汉元主席,包头市政协主席张世明,包头市委常委、昆都仑区区委书记王惠明,包头市副市长王秀莲,包头市昆都仑区长邵文祥,江苏环太集团董事长王禄宝,通威集团管亚梅董事长,通威集团总裁、通威股份董事禚玉娇,通威股份副董事长严虎,通威股份光伏事业部总裁陈星宇,通威股份董事、永祥股份董事长兼总经理段雍等领导及嘉宾出席,行业合作伙伴、投资券商、主流媒体及永祥主要管理班子和员工代表近600人见证了这一重大时刻。 顺利投产 打造全球单体规模最大产线 投产仪式上,永祥股份董事长段雍致辞表示,项目于2017年10月启动,仅历时5个月时间就完成了大型220KV变电站建设并一次性成功投运,10个月公辅投运,11个月主装置精馏进料,12个月项目正式投产,远短于同类地区同类规模企业18个月左右的建设周期,为全球单体规模最大、建设速度最快。今天项目正式投产,基于永祥在多晶硅研发、生产领域已经取得的行业领先地位,充分应用十多年的技术积累和科研成果,在工艺设计先进性、系统运行可靠性、自动化、信息化等方面进行了数十项优化和提升,生产循环体系的综合能耗有望实现全球行业最低;主要经济技术指标蒸汽、硅粉、氢气、氯气的消耗水平,达到全球领先水平,超过70%的产品能满足P型单晶和N型单晶的需要,逐步替代进口产品,实现高纯晶硅“中国制造”,产品质量进一步提升的同时,生产成本降至4万元/吨以下,进一步巩固永祥在晶硅行业的领先地位。未来,永祥将坚持“可靠性是高纯晶硅行业的生命线”的理念,坚持绿色高质量发展,积极促进地方新旧动能转换和经济发展,朝着打造高纯晶硅的世界级龙头企业和世界级清洁能源公司的宏伟目标勇往直前。 赵江涛市长在致辞中表示,2017年9月,通威集团立足降低进口高纯晶硅产品依赖、重构全球高纯晶硅竞争格局的战略高度,在包头市投资建设高纯晶硅项目。内蒙古通威高纯晶硅项目的正式建成投产,不仅标志着通威集团的发展壮大,也为包头经济转型升级做出了重要贡献。当前,包头市委、市政府正在全面贯彻落实习近平总书记在十三届全国人大一次会议内蒙古代表团的重要讲话精神,大力培育新产业、新动能、新增长极,着力推动经济高质量发展。通威集团作为国内最早从事太阳能及多晶硅技术研发和生产的企业,在多晶硅研发生产等多个领域行业领先,目前正在为打造高纯晶硅世界级生产企业和世界级清洁能源公司不懈努力。希望双方不断加强交流、持续深化合作,努力在更多领域、更大范围和更深层次,取得新共识、建设新项目、推动新发展。 刘汉元主席在致辞中表示,十多年前,中国光伏产业面临着两头甚至三头在外的困境,高纯晶硅是其中的薄弱环节,欧美在相关技术方面一直对我国采取技术封锁,我国高纯晶硅长期依赖进口。经过广大同行多年的共同努力,2016年,国内多晶硅供应首次在全国占比超过50%,目前占比已突破60%,我国多晶硅产业全面迈上新的台阶。这其中,也有在座全体永祥人所付出的艰苦努力和积极贡献!时至今日,我们不仅在能耗、成本等方面走在世界前列,在产品品质上也达到了世界先进水平。本次内蒙古通威高纯晶硅项目,永祥始终坚持高标准、高质量建设,项目创造了行业单体规模最大、建设速度最快、创新集成最精、核心指标最优、竞争力最强,创造了全新的“包头速度”、“通威速度”,也刷新了业内同类项目工程建设的“全国速度”、“全球速度”。伴随着项目的投产,将真正实现我国高纯电子级晶硅“中国制造”的目标,我国高纯晶硅产业的全球地位和竞争力将得以大幅提升,下游环节对进口的依赖将进一步降低,由此打破全球高纯晶硅产业的竞争格局!刘主席表示,在新一轮能源革命的大背景下,太阳能光伏发电已成为人类当前及未来新能源发展的主要选择。作为全球二氧化碳排放第一大国,我国理应承担起作为一个负责任大国的道义和担当,兑现习总书记在巴黎气候变化大会上向世界所作出的庄严承诺,加快推进以光伏为代表的可再生能源发展,为节能减排作出应有的贡献。相信随着内蒙古通威高纯晶硅项目的顺利投产,在内蒙古自治区、包头市、昆区各级党委、政府的关心与支持下,通威必将在提升我国高纯晶硅供给国产化水平,推动我国乃至全球能源转型升级方面作出更大贡献! 引领行业 打造光伏高地,成本持续行业领先 随着“领跑者”计划的不断实施,我国光伏产业技术不断进步,单、多晶组件效率不断提高。然而,高纯晶硅是我国光伏产业技术的薄弱环节,欧美发达国家在此方面一直实施技术封锁,让我国高纯晶硅长期依赖进口。伴随半导体产业及光伏产业的快速发展,市场需要新增优势产能来打破国外“垄断格局”。 同时推动地方新旧动能转换,带动新能源产业和区域经济的协调、绿色发展。 十余年来,永祥股份历经四次技改升级,在冷氢化、反歧化、大型节能精馏、高效还原、尾气回收、电器自动化控制技术、热能梯级综合利用技术、分析检测技术等方面实现具有自主知识产权的多项成果,处于行业先进水平。目前内蒙古通威高纯晶硅项目在充分利用十多年的技术及管理沉淀的基础上不断研发,进行了数十项优化和改进,随着技术工艺的完善、生产效率的提高、综合能耗的下降,该项目在产品质量全面提升的同时,生产成本继续领先行业并实现历史新低,产品成本降至4万元/吨以内。达产后将全面满足N型单晶的需求,有效替代进口,充分节省外汇,进一步缓解国产高纯晶硅尚有40%依靠国外进口的局面,真正实现高纯晶硅的“中国制造”,同时推动地方新旧动能转换,带动新能源产业和区域经济的协调、绿色发展。 绿色发展 坚定不移助推能源革命 经过十余年的积极布局,通威已打造出了完整的具有自主知识产权的光伏新能源产业链,已成为中国乃至全球光伏新能源产业的核心参与者和主要推动力量。在新能源产业链上游,永祥股份已成为全球领先、国内唯一一家拥有完整循环经济产业链的高纯晶硅生产企业;在产业链中游,通威太阳能深度切入太阳能发电核心设备及相关产品的研发、制造和推广,已实现电池片产能规模、出货量、盈利能力等多项指标全行业第一,成为太阳能电池片领域的全球龙头企业;在产业链终端,通威结合自身在新能源和现代渔业两大领域的产业优势,在全球独创了上可发电、下可养鱼的“渔光一体”创新发展模式,真正实现了“鱼、电、环保”三丰收。 目前,能源变革及绿色发展已成为全球共识。中国的光伏产业必将加快发展的步伐,未来3到5年,系统成本将不断降低,光伏发电平价上网时代将很快到来。届时,将有足够条件把我国中西部太阳能资源富集区域打造成为我国的光伏清洁能源基地。光伏发电作为主要的可再生清洁能源,将迅速推动我国能源消费方式的根本转变,从而推动汽车电动化、能源消费电力化、电力生产清洁化进程。在此过程中,将催生对储能应用、智慧电网的需求,在国内形成一个百万亿元,全球形成一个百万亿美元规模的巨大新兴产业,继续推动我国经济稳健快速发展。未来,通威也将继续坚定不移地发展新能源产业,以实际行动推进全球能源革命。