《MedRxiv,3月17日,Multi-city modeling of epidemics using spatial networks: Application to 2019-nCov (COVID-19) coronavirus in India》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-03-18
  • Multi-city modeling of epidemics using spatial networks: Application to 2019-nCov (COVID-19) coronavirus in India

    Bhalchandra S Pujari, Snehal M Shekatkar

    doi: https://doi.org/10.1101/2020.03.13.20035386

    Abstract

    The ongoing pandemic of 2019-nCov (COVID-19) coronavirus has made reliable epidemiological modeling an urgent necessity. Unfortunately, most of the existing models are either too fine-grained to be efficient or too coarse-grained to be reliable. Here we propose a computationally efficient hybrid approach that uses SIR model for individual cities which are in turn coupled via empirical transportation networks that facilitate migration among them. The treatment presented here differs from existing models in two crucial ways: first, self-consistent determination of coupling parameters so as to maintain the populations of individual cities, and second, the incorporation of distance dependent temporal delays in migration.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.medrxiv.org/content/10.1101/2020.03.13.20035386v1
相关报告
  • 《3月17日_基于空间网络的多城市流行病模型对印度COVID-19的应用》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-19
    • 1.时间:2020年3月17日 2.机构或团队:印度普纳大学 3.事件概要: medRxiv预印平台于3月17日发表了印度普纳大学的题为“Multi-city modeling of epidemics using spatial networks: Application to 2019-nCov (COVID-19) coronavirus in India”的文章。文章称由于2019-nCov(COVID-19)冠状病毒的持续流行,目前迫切需要建立可靠的流行病学模型。但目前大多数现有的模型存在过于细粒度而导致效率低下和过于粗粒度而不可靠的问题。 该研究中,研究人员提出了一种计算效率高的混合方法,该方法使用了各个城市的SIR模型(易感-感染-恢复模型,Susceptible Infected Recovered Model),并耦合了各个城市的交通网络从而可以加强城市之间的迁移。研究人员指出该模型与现有模型有两个重要的不同之处:第一,耦合参数的自洽性的确定可便于维持单个城市的人口;第二,在迁移过程中加入与距离相关的时间延迟。研究人员将模型应用于印度的航空和铁路网络。研究结果预测,通过印度国内的运输系统,相当一部分人口在疫情暴发后90天内随时可能处于2019-nCov的暴露之中。因此,即使在限制了国际人口迁移之后,仍然有必要对印度国内运输网络进行认真的监督管理。 *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用。 4.附件: 原文链接:https://www.medrxiv.org/content/10.1101/2020.03.13.20035386v1
  • 《MedRxiv,3月17日,Impact of city and residential unit lockdowns on prevention and control of COVID-19》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-03-18
    • Impact of city and residential unit lockdowns on prevention and control of COVID-19 Peng Shao doi: https://doi.org/10.1101/2020.03.13.20035253 Abstract With respect to the asymptomatic transmission characteristics of the novel coronavirus that appeared in 2019 (COVID-19), a susceptible-asymptomatic-infected-recovered-death (SAIRD) model that considered human mobility was constructed in this study. The dissemination of COVID-19 was simulated using computational experiments to identify the mechanisms underlying the impact of city and residential lockdowns on controlling the spread of the epidemic. Results: The implementation of measures to lock down cities led to higher mortality rates in these cities, due to reduced mobility. Moreover, implementing city lockdown along with addition of hospital beds led to improved cure and reduced mortality rates. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.