《中国科学院重庆绿色智能技术研究院等开发出基于纳米毛细管的单分子操控、识别及长度测量系统》

  • 来源专题:计量基标准与精密测量
  • 编译者: 张宇
  • 发布时间:2024-10-29
  • 生物分子的拴系态是单分子物理、单分子测序等研究的重点。拴系态分子作为一种中间态,一端具有游离态自由扩散的部分属性,另一端则受到分子锚点的严格限制,近似于固定态。然而,它的分子扩散、介电泳及分子伸展过程涉及的电动力学尚不清楚。探讨拴系态对于揭示该类分子在溶液中的运动模型与分子属性具有科学意义。

    近日,中国科学院重庆绿色智能技术研究院与武汉大学、长春理工大学、芬兰奥卢大学等合作,在ACS Nano上发表了题为Directly Characterizing the Capture Radius of Tethered Double-stranded DNA by Single-Molecule Nanopipette Manipulation的研究论文。这一成果被遴选为当期封面。

    该研究开发了基于纳米毛细管的单分子操控、识别及长度测量系统(SMILE)。科研人员利用SMILE对拴系态双链DNA分子进行捕获与拉伸操控。该研究发现了围绕拴系DNA锚点存在的特征捕获半径和拉伸半径。研究发现,在不同的捕获电压下观察到针对不同长度DNA的特征捕获半径的比例是一致的,且这个比例与它们的回旋半径比例接近。而对于拉伸半径,它的比例与轮廓长度的比例一致,且拉伸比例随着电压的增加从70%增加到90%。进而,研究通过数值模拟计算确定了特征捕获和拉伸半径的起源,即它们分别受到由熵弹性主导的捕获势垒和电场主导的逃逸势垒的影响。

    该研究揭示了拴系态分子被纳米孔捕获的特征长度分布模式。研究表明,拴系态分子的回旋半径近似于捕获半径的低电压极限状态,为揭示拴系分子的内在物理特性奠定了实验和理论基础。同时,该成果为生物物理学、基因测序以及包括RNA、蛋白质等带电分子的分子诊断等领域引入了新的测量方法和研究视角。

    研究工作得到国家重点研发计划、国家自然科学基金及重庆市自然科学基金的支持。研究成果已发表在《ACS Nano》期刊中。(DOI:10.1021/acsnano.4c05605)

  • 原文来源:https://www.cas.cn/syky/202410/t20241025_5037337.shtml
相关报告
  • 《中国科学院动物所开发出快速精准的核酸检测技术》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-07-08
    • 高效精准的核酸检测技术在传染病原检测、食品安全检疫和致病基因筛查等许多方面具有重要的应用。基于CRISPR的基因组编辑技术极大地革新了生物医学研究。有趣的是,除了能够通过对基因组精准操控来进行功能基因组学研究,最近一些研究发现CRISPR系统的某些效应蛋白,例如Cas12a,在切割靶DNA后会受激获得切割非靶向单链DNA(ssDNA)的活性,从而能够用于快速简便地进行核酸检测,在传统的PCR和测序技术之外建立了一种新的核酸检测技术。 CRISPR-Cas12b/C2c1系统大多来自嗜热菌,由于其嗜高温的特性研究相对较少。中国科学院动物研究所李伟团队在2018年首次成功地改造Cas12b系统用于哺乳动物基因组编辑,建立了Cas9和Cas12a之后的第三个CRISPR基因编辑工具。在此基础上,研究团队发现Cas12b蛋白在激活之后同样具有任意切割ssDNA的特性,并开发出 CDetection(Cas12b-mediated DNA detection)检测系统,可以用于微量DNA的简便快速检测。CDetection是集Cas12b蛋白、向导RNA、ssDNA荧光报告分子和 RPA(recombinase polymerase amplification)等温扩增于一体的DNA快速检测系统。Cas12b蛋白在靶向切割RPA扩增目标DNA后激活ssDNA切割活性,任意切割ssDNA荧光报告分子,从而发出荧光信号(如图)。基于团队前期研究发现的Cas12b能够适应较广温度(25~60℃)和pH(1~8)的稳定性,CDetection系统相较Cas12a-DETECTR系统具有更高的灵敏度,可以实现亚aM(10-19 M)的灵敏DNA检测;同时,通过tgRNA(tuned gRNA)的引入,CDetection可以实现单碱基的区分。利用CDetection系统,能够快速地实现细胞、血液、尿液以及动植物中的细菌和病毒感染、基因分型以及SNP突变检测(如图)。 相关成果于7月2日在国际学术期刊Genome Biology 发表。该研究工作由动物所和中国科学院干细胞与再生医学创新研究院完成。动物所研究员李伟和周琪为论文的通讯作者;博士生滕飞、郭璐为共同第一作者。该研究受到中国科学院战略科技先导专项及科技部、基金委等的资助。
  • 《中国科学院精密测量科学与技术创新研究院等机构在量子速度极限研究取得进展》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2024-06-16
    • 近日,中国科学院精密测量科学与技术创新研究院束缚体系量子信息处理研究组与广州工业技术研究院、广州工业智能研究院、苏州大学等合作,探讨了量子速度极限对量子信息处理的影响,并基于囚禁离子实验平台,实验证实了理论上获得的量子速度的最优上限。该研究通过量子绝热捷径操作给出了量子速度上限的最优表达式,并在实验上验证了真实的量子演化速度可以无限接近但不会超越该上限。 量子力学中的海森堡不确定原理给出了能量变化与时间之间的权衡关系,由此限制了量子态演化的最大速度。准确理解这一速度限制有助于推动量子信息技术的应用。量子绝热捷径方法是量子计算常用的量子调控手段,是通过增加辅助驱动场的方式实现与传统绝热过程相同的效果,但能够加快量子门操作的速度,利于在退相干时间内尽快完成相应的量子过程。由于受制于量子速度极限,量子绝热捷径技术能够将量子态的演化速度提升多少是热点问题。基于海森堡不确定原理,辅助驱动场的功耗与量子态演化速度极限之间存在一种权衡,而这种权衡决定了如何以最小化能量成本实现演化速度的极限。 研究发现,以往得到的权衡关系无法准确反映出量子系统真实的演化速度。主要存在的问题有:一是真实的演化速度无法达到理论上求得的量子速度极限。通常情况下,使用Cauchy-Schwarz不等式得到的量子速度极限大于真实的演化速度,不能准确反映出量子系统的情况;二是量子速度极限无法真实反映量子态本身的演化趋势,有时甚至是完全相反的描述。在此次工作的理论研究部分,科研人员利用s参数化相空间方法对量子速度极限进行二次缩放,解决了上述问题。s参数化相空间是一系列相空间的集合,如常见的Wigner相空间即s=0情形。研究发现,由于s参数具有连续性,因此总可以找到所有相空间的一个子集,使得二次缩放后的量子速度极限比以往得到的量子速度极限更优。研究通过对量子速度极限的严格证明,发现最优量子速度极限可以利用以往较少关注的s=-∞相空间来描述,提出了辅助驱动场的功耗与量子态演化速度极限之间新的权衡关系表达式。 该研究运用离子阱量子操控技术进行验证。科研人员基于钙离子量子精密测量平台,运用量子绝热捷径技术执行了朗道-齐纳模型。该研究借助单个超冷钙离子的三能级结构,利用机器学习等辅助手段制备了不同的初态。进一步,研究通过激光的精准操控,测量出体系的真实量子速度,并与理论结论进行对比。结果显示,与以前的理论结果相比,该工作获得的量子速度极限能够真实地反映量子态的演化速度和趋势,并可以更准确地代表量子速度的极限即量子速度的最优极限。 上述成果为量子信息处理中速度与功耗之间的权衡建立了更准确的解析不等式,并在实验上做了精准的检验。这有助于科学家更深入地探讨量子力学的基本原理,并可以加深科学家对量子技术中内禀存在的根本性限制的认知。 相关研究成果以Single-Atom Verification of the Optimal Trade-Off between Speed and Cost in Shortcuts to Adiabaticity为题发表在《物理评论快报》(Physical Review Letters)上(DOI:https://doi.org/10.1103/PhysRevLett.132.213602)。研究工作得到国家自然科学基金、中国博士后科学基金以及广州市的支持。