《固相反硝化系统中微生物结构及代谢途径的宏基因组分析:基于污水处理厂废水深度脱氮的中试研究》

  • 来源专题:水体污染治理
  • 编译者: 王阳
  • 发布时间:2021-06-17
  • 由于农业施肥的不合理使用和生活污水、工业污水、养殖污水、农田径流的直接排放,大量氮、磷等营养物质被排入自然水体,对水生生态系统的结构和功能构成严重威胁。目前,污水处理厂被认为在控制污染和改善水质方面起着举足轻重的作用。然而,经过生物处理后的污水处理厂废液中仍有约10-15 mgL−1的氮残留,如果不经任何深度处理直接排放,可能导致富营养化。因此,迫切需要有效的污水处理厂废液深度脱氮技术。本文以新型生物高分子3-羟基丁酸酯和3-羟基戊酸酯的共聚物(PHBV)和PHBV-锯末共混合体为载体,构建了固相反硝化系统,通过中试试验对污水处理厂(WWTPs)废液进行深度脱氮,并通过宏基因组测序分析共混物碳源对微生物群落结构、功能和代谢途径的影响。与PHBV系统相比,PHBV-锯末共混物系统的反硝化处理效果更优:NO3−-N去除率更高(96.58%)、DOC释放量(9.00±4.16 mgL−1)和NH4+-N积累量(0.37±0.32 mgL−1)更低。宏基因组分析证实了两个系统间微生物群落结构存在显著差异,并发现了四种厌氧氨氧化菌的存在。与PHBV系统相比,PHBV-锯末共混物系统的利用降低了产NH4+-N相关酶编码基因的相对丰度,增加了参与厌氧氨氧化相关酶编码基因的相对丰度,这有助于降低废液中的NH4+-N的含量。另外,在PHBV-锯末共混物系统中,产生电子的糖酵解代谢过程的酶编码基因的相对丰度更高。在PHBV-锯末共混物系统中,多种木质纤维素酶编码基因显著富集,保证了该系统的稳定供碳和连续运行。本研究结果有望为固相反硝化技术的推广提供理论依据和数据支持。

    论文ID

    原名:Metagenomic analyses of microbial structure and metabolic pathway in solid-phase denitrification systems for advanced nitrogen removal of waste water treatment plant effluent: Apilot-scale study

    译名:固相反硝化系统中微生物结构及代谢途径的宏基因组分析:基于污水处理厂废水深度脱氮的中试研究

    期刊:Water Research

    IF:9.130

    发表时间:2021.3.17

    通讯作者:吴为中

    通讯作者单位:北京大学环境科学与工程学院环境科学系

    实验设计

    本研究在宁波南区污水处理厂,以PHBV和PHBV-锯末共混合物为生物膜载体和碳源,构建固相反硝化系统。具体构建方法为:PHBV和PHBV-锯末共混合体分别与8-10 mm的陶粒以3:7的体积比混合均匀,将混合后的基质填充于高100 cm的多孔支撑盘上,以此建立了两个直径20 cm、高140 cm的圆柱形聚氯乙烯固相反硝化系统。该系统启动阶段,将污水处理厂废液与二沉池活性污泥混合后,以1:1的体积比进入固相反硝化系统,进行生物膜培养。之后每天对固相反硝化系统的水质进行分析,5天后,废液中的NH4+-N和NO3−-N浓度分别低于1.0和2.0 mgL−1时,标志着固相反硝化系统正式启动。该系统共计连续运行150天,1-76天固相脱氮系统的水力停留时间(HRT)为3h,77-150天将HRT降至1.5h,以评估脱氮性能的持久性。测得污水处理厂废液的溶解氧(DO)和pH值分别为4.1-8.0 mgL−1和5.68-6.95。

    每两天采集一次进水和出水水样。通过0.45μm醋酸纤维素膜过滤后,分别对水样中的NH4+-N、NO3−-N、NO2−-N、溶解有机碳(DOC)等水质指标进行分析。

    在系统稳定运行150天时,分别从PHBV和PHBV-锯末共混物系统中的5个采样点采集生物膜样品,每个采样点取2g均匀混合成一个样本,分别命名为P和PS。每个样本有三个生物学重复。提取相应样品的DNA进行宏基因组测序及分析,以进行微生物群落结构和代谢途径的研究。

    结论

    以PHBV-锯末共混物为载体的中试规模的固相脱氮系统成功地实现了污水处理厂废液的深度脱氮,其负面影响小于PHBV系统。宏基因组分析表明,在PHBV-锯末共混物系统中,调节NH4+-N产生的编码基因丰度相对减少,而调节厌氧氨氧化作用的编码基因丰度相对增加,最终导致系统出水中NH4+-N积累减少。与PHBV相比,PHBV-锯末共混物系统中GAPDH(EC 1.2.1.59)编码基因的相对亲和力显著提高,促进了微生物的反硝化作用。PHBV-锯末共混物系统中木质纤维素酶编码基因的显著富集表明木质纤维素酶的降解更为活跃,从而保证了碳源的持久供应和固相反硝化系统的稳定运行。本研究首次以PHBV-锯末共混物为载体构建固体反硝化系统,通过中试试验对污水处理厂废液进行深度脱氮,并对该系统中微生物代谢机理进行了研究,为天然生物材料的高效利用以及生物共混合碳源对氮代谢的影响提供了新的思路。

相关报告
  • 《城市地下污水处理厂发展现状及污泥处理分析》

    • 来源专题:农业立体污染防治
    • 编译者:季雪婧
    • 发布时间:2018-12-11
    • 摘要:随着社会经济的发展,我国的水环境污染的问题越来越突出。建设大型污水处理厂可以有效解决水环境污染的问题。为了对水污染的现况进行改善,生活与投资环境得到优化,各地区纷纷建设了不同工艺类型和处理规模的污水处理厂,而且这些污水处理厂大部分采用的是地上式的。城市污水处理的“污水就近处理回用”作为污水厂选址的优先原则具有动迁困难问题。所以能够使污水就近处理回用的地下污水处理厂成为城市污水治理工程建设的发展趋势和方向。基于此,在接下来的文章中,将围绕城市地下污水处理厂发展现状及污泥处理方面展开详细分析,希望能够给相关人士提供参考。 关键词:地下污水处理厂;污泥处理 引言:随着生态文明建设和城市化的不断发展,城市地下污水处理厂已成为地下空间综合利用和可持续发展的重要方向。为此,文章对城市地下污水处理厂发展现状及污泥处理展开分析,具有重要的现实意义。 一、地下污水处理厂建设存在的主要问题 地下污水处理厂尽管得到了很好的发展,但建设过程中仍存在以下主要问题:首先,规划建设要求高,地下污水处理厂的主体构筑物建于地下,一旦修筑完成再进行改扩建的难度将大大增加。因此在工程可行性研究阶段及设计初期,对地下污水处理厂的整体规划建设要求相对更高;其次,设计施工难度大,建设成本高。地下污水处理厂的建设由众多分项工程组成,涉及到地面景观、深大基坑的开挖和支护以及通风照明等,这些分项设施往往会根据实际情况加大规模或建设标准提高。相应的设计及施工不论从量上还是内容上难度大大增加,成本也相应增加;再次,风险因素高。地下污水处理厂有可能出现有毒气体、污水泄漏等情况,一旦发生,后果将非常严重;最后,地面景观设计单一。目前我国污水处理厂地上景观建设相对单一,设计理念也较为落后,大规模进行园林、湿地、休闲娱乐场所和公园等的建设相对较少,总体功能不够完善。 二、国内外城市地下污水处理厂建设现状 国外像芬兰、瑞典、挪威、美国、英国等国家的许多城市地下大型排水及污水处理系统取得了很好的发展。城市地下污水处理厂的发建设已经走过很长时间。瑞典拥有大型的城市地下污水处理厂,其整个排水系统的污水处理厂全部建设在地下,不论处理效率还是规模都是世界领先的。仅斯德哥尔摩市就有大型排水隧道200km。例如KAPPALA污水处理厂的设计通常采用许多平行的洞室来进行水的净化,一般情况下,污水净化要求洞室长300m,过水断面达到100m2,该处理厂的每个洞室均可满足。日本的地下处理厂也多数采用中隧道式,如神奈川县叶山镇污水处理厂等。其占用土地面积较小,节约了大量的土地资源。此外虽然修建隧道造价比较高,但不需基础工程以及回填等,总体费用相差不大。另一方面,隧道密闭的空间对污水排放的有毒气体有着较好的封闭,对环境污染的可能小较小。国内地下污水处理主要是借鉴国外地下污水处理的理念和技术,在国内运用的过程中发现并解决了许多关键性问题,形成了一套自己的理论和技术,并且取得了非常好的效果。例如香港赤柱的地下污水处理厂、深圳布吉污水处理厂、广州京溪污水处理厂以及昆明第十污水处理厂的成功应用都证明了地下污水处理厂在解决污水方面的重要发展地位和巨大的市场潜力。 三、地下污水处理厂污泥处理分析 地下污水处理厂在对污水处理排放后常残留大量的污泥,而这些污泥中存在有大量的污染物,包括有害的重金属、致病物质以及不可分解的化学物质等等。而我国每年绝大多数污水处理厂将产生的污泥直接填埋或者倾倒,不仅污染了生态环境也威胁到人类的生活安全。因此如何合理的处治污泥已成为人们亟待解决的问题[1]。 (一)典型的污泥处理技术 目前国内外常用的污泥处理技术主要包括以下六类:厌氧消化即通过多种微生物进行氧化处理,使高能的有机物转化为低分子的物质,降低污泥的毒性。污泥好氧发酵,主要为在有氧的条件下通过各类菌对污泥进行有机物分解,进而转变为腐殖质。污泥的石灰稳定,即在污泥中加入一定量的石灰,石灰与污泥发生化学反应生成固体化合物,从而钝化重金属。另外化学反应的过程中也将产生大量的热达到杀菌的作用。热干化技术是污泥通过与热媒的传热作用进行脱水的过程。经过热干化后污泥中的微生物基本灭活,干污泥可用作施肥和建筑原料等。此外污泥焚烧以及生物沥浸也是比较常见的污泥处理技术。污泥焚烧能够最大可能的使污泥无害化和减量化,但是工艺要求如污染气体排放等要求较高。生物沥浸主要依靠硫杆菌为代表的特殊菌对污泥进行深度氧化,除去重金属,进而降低污泥毒性。该技术工艺简单成本较低,已在各大污水处理厂得到应用[2]。 (二)工程实际应用 我国某地下污水处理厂一期工程污水处理规模为11万m3/d,污水处理后主要残留的污泥成份为剩余污泥、初沉污泥、水泥区化污泥以及漏失污泥等。经初步统计,污泥量为2346m3/d,污泥含量较大且出产速度较快,因此选择合理的污泥处理技术至关重要。正如前文所述,目前常用的污水处理技术较多,但是选择适合本处理厂的方法需和工程的实际情况如项目的成本、运行情况等相结合,同时进行必要的改进和衍生。根据本项目实际情况初步确定调理压榨污泥干化、污泥加钙干化和生物沥浸干化3种技术进行比选[3]。 (三)对比分析 从污泥处理前后含水率、污泥含固量以及处理前后对环境的影响等技术性能和工程建设运行等的经济费用两个角度对调理压榨污泥干化、污泥加钙干化和生物沥浸干化3种工艺进行对比分析。从技术性能角度分析,调理压榨污泥干化术优于污泥加钙干化技术和生物沥浸干化技术。从经济费用角度,污泥加钙干化技术运行费用最高,但工程费最低,而生物沥浸干化技术工程费最低,运行费最高,调理压榨污泥干化技术则二者相差不大。另一方面考虑到生物沥浸干化与原设计工艺等相较好结合,处理技术以及方式效果等较为符合我国当前环境、法律法规等要求。因此综合分析该处理厂采用生物沥浸干化污泥处理技术[4]。 结论 简而言之,尽管我国城市地下污水处理厂的建设发展日趋成熟,但仍存在一些问题。涉及到规划建设、投资运营以及景观设计等方面。今后的建设中宏观远期合理的规划是根本,时刻保持警惕,防患于未然是重中之重。此外不断创新加强和合理利用地面资源,优化地面景观设计尚待进一步研究和广泛应用。另外,通过对不同污泥处理技术进行对比分析,综合考虑认为生物沥浸干化污泥处理技术比较适用于本地下污水处理厂的污泥处理,研究结果可为类似工程提供一定的参考。最后,城市地下污水处理厂给生态文明的建设和人类环境友好型的发展带来的效益是巨大的。大规模的建设和推广应用将势必是城市今后至未来主要的发展方向,同时随着近年来城市综合管廊和海绵城市的新型崛起,合理的将地下污水处理厂与综合管廊的有效结合也是一个新的技术革命[5]。
  • 《刘洪波团队:微生物 大作用 弱电强化助力污水深度脱氮》

    • 来源专题:水体污染治理
    • 编译者:wangyang
    • 发布时间:2020-12-29
    • 近年来,经济快速发展的同时环境污染问题日益凸显,水环境恶化。城市污水中含有大量的有机物和氮、磷等无机污染物,未经处理的污水排入环境中容易污染受纳环境,如黑臭水体形成、土壤及地下水的污染以及生态失衡。生物处理法无疑是各种污水处理方法最为经济有效的方法,而污水处理脱氮过程中碳源不足已成为普遍的现象,在碳源不足的条件下,大多数污水厂即使采用前置缺氧生物强化脱氮工艺,出水总氮仍然偏高,且主要以硝酸盐形式存在。在生物污水处理中,除外加碳源、对传统污水生物处理工艺的改进以及引进新工艺等方法应对污水处理碳源不足的问题外,电极固定化酶、MFC、MEC、BER 等多种形式的生物电刺激方法逐步应用于低C/N 污水生物反硝化处理以增强微生物代谢活性,提供自养反硝化脱氮电子供体等形式提升脱氮效率。研究证明微生物弱电刺激能够增强微生物代谢活性,但其作用机制目前尚不明确,许多科学问题亟待解决 其中几个关键问题为:(1)由于微生物弱电产电的不稳定性,导致其在实际污废水处理应用上存在一定的困难,如何优化微生物电化学与传统污水处理系统的结合方式?(2)如何提升微生物电化学产电稳定性?其机理机制是什么?(3)微生物电刺激电流强度与处理效果之间的关系目前争议较大;(4)对弱电刺激脱氮效果的现有研究大多停留在去除效果分析上,弱电刺激如何影响含氮废水的处理效果?它的具体作用途径是什么?(5)弱电刺激对含氮废水中的微生物产生了哪些具体的影响? 针对以上问题,课题组对微生物弱电应用于含氮废水的处理进行了作用效果与机理方面的研究,并将其与传统污水生物处理工艺相结合,计划为污水处理提供微生物弱电刺激方面的技术支持。 主要研究内容 构建了一种微生物电化学结合传统污水处理方式的耦合系统:ABR-MFC-MEC来处理污废水,系统地研究了ABR-MFC-MEC处理污水的工艺构型优化和快速启动条件(电刺激电压,进水基质浓度,单室/双室MFC)。