《科学家在概念装置中验证了可实现量子电池的物理学原理》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2022-01-18
  • 量子电池有朝一日将可以通过一个看似矛盾的东西彻底改变能源储存--电池越大,充电越快。现在,一个科学家团队首次在一个概念验证装置中展示了支撑量子电池的超吸收量子力学原理。古怪的量子物理学世界充满了在我们看来不可能的现象。

    比如分子可以变得非常纠缠在,以至于它们开始集体行动,而这可以导致一系列的量子效应,包括超级吸收--它提高可以分子吸收光线的能力。

    “超强吸收是一种量子集体效应,分子状态之间的转换会产生建设性的干扰,”这项研究的论文通讯作者James Quach告诉New Atlas,“"建设性干涉发生在所有种类的波(光、声、水面上的波)中,当不同的波加起来比任何一个波本身的效果都要大时就会发生。至关重要的是,这允许组合分子比每个分子单独行动时更有效地吸收光线。”

    在一个量子电池中,这种现象将有一个非常明显的好处。你拥有的储能分子越多,它们就能更有效地吸收能量--换言之,你把电池做得越大它的充电就越快。

    至少,理论上应该是这样的。超强吸收尚未在足够大的规模上被证明可以建造量子电池,但新研究现在已经做到了这一点。为了建立测试装置,研究人员将一个活性光吸收分子层--一种被称为Lumogen-F Orange的染料--放在两个镜子之间的微腔中。

    “这个微腔中的镜子是用制造高质量镜子的标准方法制造的,”Quach解释道,“这就是使用交替的电介质材料层--二氧化硅和五氧化二铌--来创建所谓的‘分布式布拉格反射器’。这产生的镜子比典型的金属/玻璃镜子反射更多的光。这很重要,因为我们想让光尽可能长时间地停留在空腔内。”

    然后,该团队使用超快瞬时吸收光谱来测量染料分子是如何储存能量的以及整个设备充电的速度。果然,随着微腔的大小和分子数量的增加,充电时间减少并证明了超强吸收的作用。

    最终,这一突破可能为实用的量子电池铺平道路,这使之成为快速充电的电动汽车或能够处理来自可再生资源的突发能量的储能系统。但当然,这项研究仍处于非常早期的阶段。

    Quach告诉New Atlas:“这里的想法是一个原则性的证明,即在这样的设备中增强对光的吸收是可能的。然而,关键的挑战是弥合这里的小型设备的原理证明跟在更大的可用设备中利用同样的想法之间的差距。下一步就是探索如何将其跟其他储存和传输能量的方式结合起来,从而提供一个可以实际使用的设备。”

  • 原文来源:http://www.nengyuanjie.net/
相关报告
  • 《科学家将核废料转化为可持续使用1000年的钻石电池》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-04-26
    • 核能被认为是一种清洁能源,因为它的二氧化碳排放量为零;然而,与此同时,随着世界各地越来越多的反应堆的建成,它产生了大量的危险的放射性废物。专家们为这个问题提出了不同的解决方案,以便更好地照顾环境和人们的健康。由于没有足够的安全储存空间来处理核废料,这些想法的焦点是材料的再利用。 放射性钻石电池在2016年首次被开发出来并立即受到好评,因为它们承诺提供一种新的、具有成本效益的核废料回收方式。在这种情况下,不可避免地要斟酌它们是否是这些有毒、致命残留物的最终解决方案。 什么是放射性钻石电池? 放射性钻石电池最初是由布里斯托尔大学卡博特环境研究所的一个物理学家和化学家团队开发的。这项发明是作为一种β辐射电转换设备提出的,这意味着它是由核废料的β衰变提供动力。 β衰变是一种放射性衰变,当一个原子的原子核有过量的粒子并释放一些粒子以获得更稳定的质子和中子的比例时就会发生。这就产生了一种被称为β辐射的电离辐射,其中涉及大量被称为β粒子的高速和高能电子或正电子。β粒子含有核能,可以通过半导体转化为电能。 β衰变是一种放射性衰变,当一个原子的原子核有过量的粒子并释放一些粒子以获得更稳定的质子和中子的比例时就会发生。 一个典型的betvoltaic电池由置于半导体之间的放射性材料薄层组成。当核材料衰变时,它发射出β粒子,将半导体中的电子击散,产生电流。然而,放射源离半导体越远,其功率密度就越低。除此之外,由于β粒子是随机向各个方向发射的,只有少数粒子会击中半导体,而其中只有少数粒子会被转化为电能。这意味着核电池的效率比其他类型的电池低得多。这就是聚晶金刚石(PCD)的作用。 放射性钻石电池是使用一种叫做化学气相沉积的工艺制造的,这种工艺被广泛用于人造钻石的制造。它使用氢气和甲烷的混合等离子体,在非常高的温度下生长金刚石薄膜。研究人员通过使用含有放射性同位素Carbon-14的放射性甲烷,对CVD工艺进行了修改以生长放射性钻石,这种放射性同位素在经过辐照的反应堆石墨块上发现。 钻石是人类所知的最硬的材料之一--它甚至比碳化硅更硬。而且它既可以作为一个放射源,也可以作为一个半导体。把它暴露在β射线下会得到一个不需要充电的长效电池。它内部的核废料一次又一次地为它提供燃料,使它能够长期自我充电。然而,布里斯托尔的科研团队警告说,他们的放射性钻石电池不适合用于笔记本电脑或智能手机,因为它们只含有1克碳-14,这意味着它们提供的功率非常低--只有几微瓦,低于典型的AA电池。因此,到目前为止,它们的应用仅限于那些必须长时间无人看管的小型设备,如传感器和心脏起搏器。 核电池的起源可以追溯到1913年,当时英国物理学家亨利-莫斯利发现,粒子辐射可以产生电流。在20世纪50年代和60年代,航空航天工业对莫斯利的发现非常感兴趣,因为它有可能为长期任务的航天器提供动力。RCA公司也研究了核电池在无线电接收机和助听器中的应用。 但为了发展和维持这项发明,还需要其他技术。在这方面,合成钻石的使用被认为是革命性的,因为它为放射性电池提供了安全性和导电性。随着纳米技术的加入,一家美国公司打造了一个高功率的纳米钻石电池。 NDB公司总部位于加利福尼亚州旧金山,成立于2012年,目标是创造一种更清洁、更环保的传统电池替代品。这家初创公司在2016年推出了其版本的基于钻石的电池,并宣布在2020年进行两项概念验证测试。它是试图将放射性钻石电池商业化的公司之一。NDB的纳米钻石电池被描述为Alpha、Beta和中子辐射电池,根据他们官网的介绍,有如下特点: 持久性。该公司计算出这些电池可以持续28000年,这意味着它们可以为长期任务中的空间飞行器、空间站和卫星提供可靠的动力。地球上的无人机、电动汽车和飞机将永远不需要停下来充电。 安全。钻石不仅是最坚硬的物质之一,也是世界上最有导热性的材料之一,这有助于保护电池中的放射性同位素所产生的热量,使其迅速变成电流。 市场友好性。其中的PCD薄膜层使电池可以允许不同的形状和形式。这就是为什么纳米钻石电池可以有多种用途,进入不同的市场,从上述的空间应用到消费电子。不过,消费版寿命不会超过十年。 纳米钻石电池计划在2023年进入市场。 Arkenlight是将布里斯托尔的放射性钻石电池商业化的英国公司,计划在2023年下半年向市场发布他们的第一个产品。 放射性钻石电池的未来 现代电子设备的便携性,电动汽车的日益普及,以及21世纪将人类带入火星的长期太空任务的竞赛,在过去几年中引发了人们对电池技术研究的日益关注。 一些类型的电池更适合于某些应用,而对另一些应用则不那么有用。但我们可以说,我们熟悉的传统锂离子电池不会很快被放射性钻石电池取代。 传统电池的持续时间较短,但它们的制造成本也更低。然而,与此同时,它们的寿命并不长(它们的寿命约为5年),这也是一个问题,因为它们也会产生大量的电子垃圾,不容易回收。 放射性钻石电池更方便,因为它们的寿命比传统电池长很多。如果它们能像NDB公司提出的那样被开发成通用电池,那么我们最终可能会得到比智能手机寿命长得多的电池。 然而,Arkenlight公司开发的钻石β辐射电转换技术不会走那么远。该公司正在研究将其大量的碳-14betab电池堆叠成电池的设计。为了提供高功率的放电,每个电池可以伴随着一个小型的超级电容器,这可以提供一个优秀的快速放电能力。 然而,这种放射性材料的寿命也超过了5000年。如果辐射以气态形式从设备中泄漏出来,可能会成为一个问题。这就是钻石出现的原因。在钻石的形成中,C-14是一种固体,所以它不能被生物提取和吸收。 英国原子能管理局(UKAEA)计算,100磅(约45公斤)的碳-14足以拿来制造数百万个基于钻石的长寿命电池。这些电池还可以降低核废料的储存成本。 布里斯托尔大学研究员汤姆-斯科特教授告诉Nuclear Energy Insider说:"通过直接从反应堆中去除辐照石墨中的碳-14,这将使剩余的废物产品的放射性降低,因此更容易管理和处置。处置石墨废物的成本估计为:中级废物[ILW]每立方米46,000磅(60,000美元),低级废物[LLW]每立方米3,000磅(4,000美元)。" 所有这些特点正是我们需要的可持续未来的最佳选择之一,我们可以拭目以待,看看制造商是否能找到处理生产成本和低能量输出的方法,并将他们的钻石基电池以成本效益和可获得的方式推向市场。
  • 《“超吸收”量子电池概念得到验证》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-01-21
    • 据近日发表在《科学进展》杂志上的论文,澳大利亚阿德莱德大学的研究人员及其海外合作伙伴在使量子电池成为现实的过程中迈出了关键一步。他们成功地证明了超吸收的概念,这是支撑量子电池的关键思想。   研究人员介绍说,超吸收是一种适用于量子技术的复杂科学理论,它表示一种量子集体效应,分子状态之间的转变会产生建设性干扰。建设性干扰发生在各种波(光、声、水上的波)中,当不同的波加起来产生比任何一种波都更大的影响时,超吸收就会发生。至关重要的是,与每个分子单独作用相比,这使得组合分子能够更有效地吸收光。这意味着量子能量存储设备中的分子越多,即量子电池越大,它吸收能量的效率就越高,充电时间更快。   阿德莱德大学光子学与高级传感研究所研究员詹姆斯·Q·夸赫博士说:“从理论上讲,量子电池的充电功率增长速度可能快于电池尺寸,这可能会带来新的充电方式。”   为了证明超吸收的概念,研究小组建造了不同尺寸的小型晶片状微腔,每个微腔都含有不同数量的有机分子。然后,他们用激光为每个晶片状微腔充电。   “微腔的活性层包含存储能量的有机半导体材料。量子电池超吸收效应的基础是,所有分子通过一种称为量子叠加的特性共同作用的想法。”夸赫博士说。   “随着微腔尺寸的增大和分子数量的增加,充电时间缩短。”夸赫博士说,“这是一项重大突破,标志着量子电池发展的一个重要里程碑。”   据研究团队称,量子电池的想法有可能对可再生能源和微型电子设备中的能量捕获和存储产生重大影响。   到2040年,人们的能源消耗水平预计将比2015年增加28%。大部分能源仍将来自化石燃料,但这需要付出很大的环境污染代价。一种能够同时收集和储存光能的电池将大大降低成本,同时减少太阳能技术存在的能源不确定性。在量子力学的推动下,电池技术的新前景可能会因此次研究而成为现实。   总编辑圈点   量子电池的概念2015年才被提出来,但这个名词自带魔力:让人听起来就觉得它遥不可及。不过,这不影响其在科学家心中的地位——量子电池被认为在未来极有可能彻底改变能量存储行业,简单来说,就是充电比所有传统电池都快。正因此,支撑量子电池的关键思想——“超吸收”原理的首次成功证明才如此备受重视。这被看作是量子电池或将成为现实的一个标志。