《宁波材料所利用石墨烯研制出千瓦级铝空气电池》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2017-06-20
  • 为了满足不断发展的智能电网、移动通讯、电动汽车和应急救灾的需要,迫切需要开发能量高、成本低、体积小、寿命长的新型化学电源。金属空气电池(也称为金属燃料电池)是一种将金属材料的化学能直接转化为电能的化学电源。金属空气电池具有能量密度高、价格低廉、资源丰富、绿色无污染、放电寿命长与安全环保等优势,已被国家列入《“十三五”国家战略性新兴产业发展规划》,同时还被国家发改委、能源局列入《能源技术革命创新行动计划(2016-2030年)》。仅在通讯基站备用电源市场方面,据不完全统计,2016年中国通讯基站的数目是近600万个。传统通讯基站一般采用大容量铅酸蓄电池配合柴油发电机作为备用电源系统,目前在用铅酸蓄电池高达1000多万组,体积和质量均较大,3~4年更换一次,使用寿命较短。然而,金属空气电池具有比能量密度高(系统可达400 Wh/kg以上)、储存时间久(约15年)、备用时间长(30~50 h)及适配温度范围宽(–20℃~60℃)等优点,是替代通讯基站铅酸备用电源的优异备选。此外,金属空气电池能量密度高达800 Wh/kg,是当前商业化锂离子动力电池的4倍以上,在电动汽车增程器应用方面也同样具有诱人的市场前景。

      然而,金属空气电池产业发展仍然面临诸多技术瓶颈,影响了其应用推广。究其原因有四方面:一是当前研发应用的氧还原催化剂催化活性不够高,电极功率密度有待提升;二是常规结构的空气阴极极化电阻较大,难于满足高功率输出;三是金属阳极自腐蚀情况严重,导致阳极利用率不高;四是电池系统热失控问题,导致电池系统无法长时间工作。自2013年,宁波材料所动力锂电池工程实验室部署了金属空气电池研究,研究团队在石墨烯复合催化剂、新结构空气阴极、金属阳极合金化、单电池制备工艺等多方面取得了一系列重要进展,其中采用石墨烯复合锰基氧化物催化剂以及新型石墨烯基高效空气阴极将单体电池功率密度了提高25%(见图1),大幅度提升金属空气电池综合性能。系列研究工作发表在国际著名电化学和材料学术期刊(Journal of Power Sources,2017, 358, 50;Journal of Power Sources, 2017, 342, 192; Journal of Materials Chemistry A, 2017, 5, 6411; RSC Advances, 2017, 7, 25838; Electrochimica Acta, 2016, 214, 49; Electrochimica Acta, 2017, 230, 418; Journal of The Electrochemical Society, 2017, 164(7), F768; RSC Advances, 2017, 7, 5214; RSC Advances, 2016, 6, 99179; Journal of Power Sources, 2015, 297, 202)。

      秉承“料要成材,材要成器,器要好用”的研究理念,研究团队在电池设计及系统集成技术方面也进行了深入研究。在2015年成功研制出能量密度400 Wh/kg、容量3 kWh、输出功率300 W的镁空气电池发电系统。近日,又成功研制出基于石墨烯空气阴极的千瓦级铝空气电池发电系统(见图2),该电池系统能量密度高达510 Wh/kg、容量20 kWh、输出功率1000 W。通过实际演示显示该电池系统可同时为一台电视机、一台电脑、一台电风扇以及10个60W照明灯泡同时供电(见图3),初步验证了该铝空气电池系统的发电供电能力。据悉,研究团队正在积极设计开发用于通讯基站备用电源和电动汽车增程器的5kW级大功率铝空气电池系统。

      研究团队围绕金属空气电池研究已发表SCI论文10余篇、申请发明专利20余项,具备了从关键材料与部件、单体电池、模块化电池堆的小试制备能力,准备近期推动金属空气电池产业化。研究工作得到了宁波市科技创新团队和宁波市自然科学基金的资助。

    图1 石墨烯基阴极与常规阴极的电化学性能比较

    图2 1000 W铝空气电池发电系统

    图3 铝空气电池发电系统演示现场

相关报告
  • 《宁波材料所合成出新颖二维MXene材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 发布时间:2017-04-19
    • 二维材料因其高比表面积,独特的电子结构及物理化学性质而引起人们的广泛关注。作为研究最为广泛的二维材料,石墨烯因其超高的力学强度、优异的电导率及热导率,在电化学储能,透明电极材料,及纳米复合材料等领域展现出广泛的应用前景,但本征的零带隙及单一的化学组成限制了其在场效应晶体管等领域的应用。二元及三元二维材料,如金属氧化物、层状金属硫族化合物,六方氮化硼,层状氢氧化物等体系的研究日益受到关注。二维层状过渡金属碳化物纳米片(MXenes)材料则是近年来发现的一类新型二维材料,由美国Drexel大学Michel Barsoum在此领域做了大量开拓性研究,目前该实验室已相继获得Ti3C2Tz, Ti2CTz, Ta4C3Tz, TiNbCTz, (V0.5,Cr0.5)3C2Tz, Ti3CNTz, Nb2CTz,V2CTz, Nb4C3Tz, Mo2TiC2Tz, Mo2Ti2C3Tz, Cr2TiC2Tz, , Mo2CTz, Ti4N3Tz等MXenes结构。MXenes具有高比表面积、良好的导电性和亲水性,理论预测这类材料具有高弹性模量及高载流子迁移率,在导电材料及功能增强复合材料等方面有良好的应用前景。前期研究发现多种阳离子能够自发地插入到MXenes材料层间,因此在储能领域也有良好的应用前景。如已有的研究报道,Ti3C2Tz、Ti2CTz、V2CTz、Nb2CTz等可作为锂离子电池和超级电容器的电极材料,它们具有较高的比容量(可达410 mAh/g @ 1 C)和体积比电容(可达900F/cm3)以及良好的充放电循环稳定性(Science, 2013, 341, 1502-1505;Nature 2014, 516, 78-81)。因此,MXenes被认为极具发展潜力的新一代二维纳米功能材料。   正因为此,如何抢先合成出具有丰富d电子结构的过渡金属碳化物材料已成为全世界关注的焦点。目前,MXenes的制备主要是通过HF酸,NH4HF2溶液,LiF及HCl混合溶液及低共熔混合盐介质中对A位为Al的MAX相材料(为一超过70组员的材料体系)中的Al原子选择性刻蚀而得到。由于过渡金属Zr及Hf难以形成A位为Al的MAX相,因此,截止目前,关于Zr系及Hf 系的MXenes材料仍未见报道。中国科学院宁波材料所特种纤维与核能材料工程实验室采用原位反应放电等离子烧结法(SPS)获得的高纯新型Zr3Al3C5层状碳化物作为前驱体,以HF酸为蚀刻剂,选择性剥离键合较弱、易于水解的Al-C结构单元,首次获得Zr系二维MXenes材料。该工作已发表在国际期刊《Angewandte Chemie-International Edition》(128, 5092-5097, 2016)。   相比于Zr系材料,Hf系层状碳化物更难获得单一的物相,通常获得的是Hf3Al3C5、Hf3Al4C6和Hf2Al4C5三元化合物的混合相,并且由于较强的亚层间界面结合,我们发现直接以三元Hf-Al-C复合相为前驱体难以通过选择性刻蚀法获得Hf系二维材料,所得到的剥离产物主要为立方相HfC。已有的研究表明,基于这些三元相的单相固溶体相对更易获得,并且有助于改善相纯度。此外,考虑到Hf-C与Al-C片层间较强的相互作用,为进一步实现有效剥离,对单胞内的Hf-C及Al-C亚层间的界面进行调控,以弱化Hf-C与Al-C片层间的界面结合非常重要。我们基于固溶法调谐单胞内亚层的思路,在Al位引入少量Si,采用SPS方法合成了新型Hf2[Al(Si)]4C5和Hf3[Al(Si)]4C6固溶体材料,以此固溶体为前驱体,以HF酸为蚀刻剂,实现了对Al(Si)-C结构单元的选择性剥离,首次获得了Hf系二维MXenes材料。借助结合能和原子电荷计算分析,阐明了Si掺杂促进氢氟酸剥离过程的微观机制,由于Si比Al多一个价电子,掺杂替代Al原子之后,能有效减弱Hf原子层和剥离的片层Al(Si)4C4之间的界面结合,对应结合能的数值从8.60 eV直接降低到4.05 eV,因而Si的引入实现了对单胞内HfC及Al(Si)-C片层界面的有效调谐,显著弱化了界面结合,进而实现了剥离。Hf系新颖二维碳化物材料在储能、吸波和光电器件上有着潜在的应用。该实验室发现其具有优良的电化学循环储能特性,在锂电池和钠电池测试中在电流密度为200 mAg-1 循环200次后分别得到体积比容量为1567 mAh cm-3 and 504 mAh cm-3. 高体积比容量材料有望应用于发可应用于空间飞行器、移动装备等小型化供能系统中。该新型Hf系MXene二维材料工作近期已经被国际期刊《ACS Nano》(DOI: 10.1021/acsnano.7b00030)接收发表。   另外,该实验室与香港城市大学支春义教授合作,利用常规水热处理方法获得了量子点结构的Ti3C2型MXene材料。该量子点材料具有很好的荧光特性和生物相容性,有望在无稀土发光显示材料和生物标记及光热治疗等领域得到广泛应用。该工作也将在2017年的《Advanced Materials》(DOI: 10.1002/adma.201604847)期刊上出版。   目前国际上MXene材料研究方兴未艾,正逐步成为继石墨烯、二硫化钼、黑鳞等二维材料之后新的研究热点。中国科学家在Zr系和Hf系对应MXene材料合成上的突破将有力扩展人们对于二维材料认识的视野,也对于纳米能源器件和光电器件研究提供全新的素材。   以上工作得到国家自然科学基金委(21671195,11604346,51502310,21577144,91426304)和中国科学院核能材料创新团队的支持。 图 Hf系MXene材料合成示意图和原子力显微镜形貌图。   目前元素周期表过渡族金属区域业已合成出对应的MXene材料,其中Zr系和Hf系由中国科学院合成
  • 《宁波材料所成功研制出吸光率高达99%的超黑吸光涂层》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-04-23
    • 中国科学院宁波材料技术与工程研究所先进涂层与增材制造技术团队经过多年研究,成功开发出一种超黑涂层。经第三方权威机构检测,200nm-25μm波段吸光率高达99%。该涂层可在多种基材表面沉积,同时可实现大面积批量制备,而且可适应高温、低温、真空、液体等极端服役环境,具有极广阔的应用前景。   超黑涂层现有或潜在的应用领域十分广泛。例如,空间红外天文望远镜处在工作状态时,其内部元器件会因为发热而产生微量红外线,从而干扰仪器对于空间目标波段的观测。为此,有必要吸收仪器本身产生的光学干扰,以提高望远镜对于目标信号的灵敏度。当然,对于杂质光源的屏蔽不仅仅是天文望远镜的需求,所有精密的光学仪器,都需要屏蔽无关的光学干扰,如拉曼、紫外、红外光谱仪等。光学或微波暗室需要做到真正的“暗”,才可以保证内部仪器工作不受干扰。同时,军事上也需要隐身技术,如为军事设备或人员提供各种必要的伪装等。除此之外,太阳能电池也需要增强对于特定光源的吸收,以提高能量转换效率。   吸光材料的研究多关注于超黑物质。当光线与物体发生作用时,部分能量被物体吸收,部分未被吸收的能量被反射、散射或透射,反射与散射部分影响我们所观察物体的颜色。当所有可见光都被物体吸收时,则物体表现为黑色,所以物质越黑则吸光范围越广。相关研究的难点不仅在于超黑物质本身的研制,同时也在于超黑涂层的制备技术开发,因为只有把超黑物质制备为涂层,才能实现其长效工作。而且应用场景对基材的需求多种多样,涂层服役工况条件各异,导致了超黑涂层研制困难重重。   经过多年研究,中国科学院宁波材料所先进涂层与增材制造技术团队的科研人员成功研制出一种新型超黑物质,并开发出一种新型超黑涂层。该涂层可以沉积在几乎所有的材质基体表面,包括柔性基体,尺寸大小和形状不受限制,并且可以实现高效、大面积的可控制备,可应用于超低温、高温、真空、液体等极端环境。经第三方权威机构测试,其在200nm-25μm波段吸光率高达99%。同时,该超黑涂层所用材料超轻,不会增加仪器自身重量。   除了空间探测、精密仪器、超黑暗室、光伏组件之外,该涂层有望应用于所有需要光学信号调控的领域,包括卫星光学定位、数码摄像机、建筑隔热保温、视觉艺术设计等领域。未来,更多潜在的应用有望继续被开发出来,这将是一个发展空间广阔的蓝海。