《Cell,10月30日,Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-11-18
  • Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2

    Alexandra C. Walls 14

    Brooke Fiala 14

    Alexandra Schäfer

    Timothy P. Sheahan

    David Veesler

    Neil P. King 15

    Open AccessPublished:October 30, 2020DOI:https://doi.org/10.1016/j.cell.2020.10.043

    Summary

    A safe, effective, and scalable vaccine is needed to halt the ongoing SARS-CoV-2 pandemic. We describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 SARS-CoV-2 spike receptor-binding domains (RBDs) in a highly immunogenic array and induce neutralizing antibody titers 10-fold higher than the prefusion-stabilized spike despite a 5-fold lower dose. Antibodies elicited by the RBD nanoparticles target multiple distinct epitopes, suggesting they may not be easily susceptible to escape mutations, and exhibit a lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the assembled nanoparticles suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms and have launched cGMP manufacturing efforts to advance the SARS-CoV-2-RBD nanoparticle vaccine into the clinic.

  • 原文来源:https://www.cell.com/cell/fulltext/S0092-8674(20)31450-1
相关报告
  • 《Cell,3月30日,Antibody evasion by the P.1 strain of SARS-CoV-2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2021-04-02
    • Antibody evasion by the P.1 strain of SARS-CoV-2 Wanwisa Dejnirattisai # Daming Zhou # Piyada Supasa # Jingshan Ren David I. Stuart Gavin R. Screaton Show all authors Show footnotes Open AccessPublished:March 30, 2021DOI:https://doi.org/10.1016/j.cell.2021.03.055 Summary Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations: P.1 from Brazil, B.1.351 from South Africa and B.1.1.7 from the UK (12, 10 and 9 changes in the spike respectively). All have mutations in the ACE2 binding site with P.1 and B.1.351 having a virtually identical triplet: E484K, K417N/T and N501Y, which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine induced antibody responses than B.1.351 suggesting that changes outside the RBD impact neutralisation. Monoclonal antibody 222 neutralises all three variants despite interacting with two of the ACE2 binding site mutations, we explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.
  • 《Nature,6月18日,Convergent antibody responses to SARS-CoV-2 in convalescent individuals》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-06-19
    • Convergent antibody responses to SARS-CoV-2 in convalescent individuals Davide F. Robbiani, Christian Gaebler, […]Michel C. Nussenzweig Nature (2020) Abstract During the COVID-19 pandemic, SARS-CoV-2 infected millions of people and claimed hundreds of thousands of lives. Virus entry into cells depends on the receptor binding domain (RBD) of the SARS-CoV-2 spike protein (S). Although there is no vaccine, it is likely that antibodies will be essential for protection. However, little is known about the human antibody response to SARS-CoV-21–5. Here we report on 149 COVID-19 convalescent individuals. Plasmas collected an average of 39 days after the onset of symptoms had variable half-maximal pseudovirus neutralizing titres: less than 1:50 in 33% and below 1:1,000 in 79%, while only 1% showed titres above 1:5,000. Antibody sequencing revealed expanded clones of RBD-specific memory B cells expressing closely related antibodies in different individuals. Despite low plasma titres, antibodies to three distinct epitopes on RBD neutralized at half-maximal inhibitory concentrations (IC50 values) as low as single digit nanograms per millitre. Thus, most convalescent plasmas obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity. Nevertheless, rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective.