《氢能利用再添“安全卫士” 新型传感器实现氢气秒级响应》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2022-02-24
  • 声表面波氢气传感器的技术优势在于快速响应与高灵敏度。声表面波技术本身对表面负载表现出极高的灵敏度和快速响应特点。将之与特异选择性的氢敏材料相结合,利用传感过程中的气体吸附效应对声表面波传播的作用,即可实现对氢气的快速高灵敏检测。

    氢气作为一种清洁能源,在促进节能减排、调整能源产业结构、应对全球气候变化等方面具有广阔应用前景。

    然而,使用氢气存在一个“痛点”。氢气本身具有易燃易爆、无色无味的性质,这使得氢气在泄漏时难以被察觉,累积后极易产生安全事故。更好地开发利用氢能,快速、高灵敏的氢气传感技术必不可少。

    近日,传感器领域的重要期刊《Sensors and Actuators B:Chemical》上线了一篇重要论文,展现了氢气传感技术的新进展。中国科学院声学研究所超声学实验室研究员王文带领课题组在前期工作基础上,与南开大学教授杨大驰团队合作,将微纳声表面波器件技术与钯镍纳米线氢敏材料相结合,提出并研制了一种具有秒级响应、高灵敏和低检测限的新型声表面波氢气传感器。

    目前氢传感技术难以满足实用需求

    2019年仲夏之际,全球在20天内发生了3次氢气相关的爆炸事件。韩国一个氢燃料储存罐发生爆炸事故;美国一处化工厂储氢罐和氢气运输拖车发生爆炸和火灾;挪威首都奥斯陆郊外的一处加氢站发生爆炸。

    如何安全利用氢气这一绿色清洁能源,成为人们关注的焦点。

    王文告诉记者:“氢气易燃易爆。在空气中氢气浓度在4%—75%范围内极易发生爆炸,由氢气泄漏导致的安全事故时有发生。因此,使用氢能时必须进行实时监测,氢气传感器也就成为氢能应用中必不可少的关键部件。”

    目前,典型氢气传感技术运用了催化、热导、电化学、电阻式及光学等方法。王文介绍道,这几种方法各有优缺点。

    催化法传感器可稳定并快速检测浓度在4%以内的氢气,但对可燃性气体的选择性较差,易受抑制剂影响,且需较高的工作温度,难以满足氢能应用领域极高的安全与可靠性要求。

    热导式传感器可在大范围内实现较为快速(约在20秒内)的氢气传感,但传感精度不高,对高热导率气体,例如氦、甲烷、一氧化碳等气体,会造成交叉敏感,也难以实现对1%以下浓度氢气的检测。

    电化学传感器可以在常温下工作,且灵敏度较高,但响应速度较慢(约在70秒内),使用寿命也较短。而电阻式传感器虽然能实现秒级快速氢传感,但一般需高温工作环境(300摄氏度至800摄氏度),且选择性差、易中毒。

    光学传感器的优势在于传感器件抗电磁干扰强,较安全,且灵敏度和测量精度高,能够达到实时响应。但是传感器体积较大,整体系统复杂且成本较高。

    美国能源部2007年便制定了汽车以及固定式电力系统中氢气检测的性能指导要求。其中,最为关键的一条指明了对氢气传感器的性能要求——响应速度与恢复速度期望在1秒内,量程要求在0.1—10vol%。而现有的氢气传感器难以达到该要求。

    “目前,氢传感技术在响应速度、使用量程及安全性等方面均难以满足氢泄漏监测的实用需求,新的氢传感技术与方法亟待发展。”王文说。

    打造快速响应与高灵敏度的新型传感器

    实际上,声波气敏技术作为声学领域的重要发展方向,王文和同事们对其前沿动态一点也不陌生。他和同事们一直深耕于此,在特异性气敏材料响应机制、多效应耦合的声表面波气敏效应及高性能声表面波气敏元件优化等方面的研究取得重要进展。

    为了满足氢能发展的实用需求,研发更灵敏的氢气传感器,王文及其课题组加快了攻关步伐。他们找到了在氢敏材料方面有着较为深入研究的南开大学杨大驰教授的团队。

    双方一拍即合。“自2016年起,我们就开始和杨大驰教授的团队合作,开展新型声表面波氢气传感器研究。”王文表示,中国科学院声学所的声表面波技术研究在国内处于优势地位,南开大学则在氢敏材料研究方面有多年积累。双方期望通过将声表面波器件技术与钯基纳米材料(一种氢敏材料)结合,探索出快速氢传感新方法,以解决现有氢传感技术所面临的技术难题。

    “声表面波氢气传感器的技术优势在于快速响应与高灵敏度。”王文解释道,声表面波技术本身对表面负载表现出极高的灵敏度和快速响应特点,将之与特异选择性的氢敏材料相结合,利用传感过程中的气体吸附效应对声表面波传播的作用,即可实现对氢气的快速高灵敏检测。

    “此外,声表面波氢气传感器还具备良好的重复性与选择性,以及小体积、低成本的技术特点。”王文说。

    尽管思路和目标十分清晰,在研究过程中,王文及其课题组还是遇到了难题。“我们面临两个技术难点,一个是钯基氢敏材料的响应机制及设计方法,另一个是高性能的声表面波氢敏元件设计与制备。”

    王文告诉记者,他们通过讨论和各种实验,解决了难题。例如,通过探索钯基材料及纳米调控机制,确定了纳米线制备方法;建立分析方法,对传感器功能结构进行优化。

    团队最终成功研制出新型声表面波氢气传感器样机。

    王文高兴地表示:“样机测试结果很好,验证了最初的设计思想。新型声表面波氢气传感器实现了对氢气检测的快速响应、高灵敏度及低检测限。”

    在氢能领域应用前景广泛

    作为一种新兴能源载体和化工原料,氢气具有来源广泛、清洁环保、可循环利用等一系列优点,与太阳能、风能等被称为九大新能源,并被誉为最具发展前景的二次能源。

    据不完全统计,截至目前,已有北京、河北、四川、山东等超过30个地方陆续出台了涉及氢能产业发展的政策及相关规划。根据《北京市氢能产业发展实施方案(2021—2025年)》,2025年前,京津冀区域累计实现氢能产业链产业规模1000亿元以上,减少碳排放200万吨。

    “氢能在电子工业、汽车业、冶金工业、石油化工、浮法玻璃、精细有机合成、航空航天、食品加工等方面都有广泛应用,作为一种绿色能源,它的应用程度在不断深化。未来,氢气传感器的市场需求也将急剧增加。”王文说。

    近年来,氢气传感器得到了飞速发展,涌现了诸多如电化学、电学式及光学式等不同技术原理的商用氢气传感器。各国科研院所持续投入力量开展氢气传感的新原理新技术研究,以期满足实际应用的需求。

    “声表面波氢气传感器引起了很多科研人员的兴趣。”王文表示,不少研究聚焦氢敏材料设计,取得了不错的试验效果。

    “但迄今为止,因为氢敏材料存在稳定性与可靠性方面的技术难题,还没有出现商业化的声表面波氢气传感器。”王文说。

    不过,随着碳达峰碳中和工作深入推进,未来,高灵敏氢气传感器将“大显身手”。

    王文对新型声表面波氢气传感器的应用前景很有信心。“鉴于声表面波氢气传感器具备现有技术难以比拟的快速、高灵敏、低功耗、小体积与低成本等特点,一旦完成工程化,在氢能领域极具应用前景。”

  • 原文来源:http://www.cnenergynews.cn/
相关报告
  • 《中国科学院声学研究所提出并研制一种秒级响应的新型声表面波氢气传感器》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-01-21
    • 氢气作为一种清洁能源,在促进节能减排、调整能源产业结构、应对全球气候变化等方面具有广阔应用前景,然而氢气易燃易爆,其无色无味的特点使其泄漏时不易被察觉。因此,快速、高灵敏的氢气传感技术研究在氢能源的开发利用中十分必要,而现有氢气传感器在功耗、体积、响应速度及灵敏度等方面难以满足实际应用需求。 中国科学院声学研究所超声学实验室研究员王文课题组在前期工作基础上,与南开大学教授杨大驰团队合作,将微纳声表面波器件技术与钯镍纳米线氢敏材料相结合,提出并研制了一种秒级响应的新型声表面波氢气传感器。钯镍纳米线具有较大的比表面积,容易吸附大量气体,有助于提高传感器的响应速度。 研究人员采用湿化学法制备钯镍纳米线并将其溶于乙醇中,通过滴涂的方式沉积在声表面波器件表面构建声表面波氢气传感器,然后将所研制的传感器集成到鉴相电路中,进行测试评估。实验结果表明,该声表面波氢气传感器实现了目前相关研究成果中的最快响应(1.8s)、1.65mV/% 的高灵敏度与7ppm的低检测限,并具有良好的重复性与选择性。
  • 《氢能万亿级市场新动力,海水直接制氢再迎技术突破》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2023-04-23
    • 摘要:海水直接电解系统可就地将海洋可再生能源转化成氢气进行运输利用,或将成为一种能源高效储存和利用的新方式。近日,一个由美国能源部SLAC国家加速器实验室和斯坦福大学的研究人员领导的团队开发了一种耐海水的双极膜电解槽,该设计被证明在不产生大量有害副产物的情况下成功地产生了氢气,有望推动海水直接电解制氢的新发展。 氢成为21世纪人类可持续发展最具潜力的二次清洁能源。 可再生能源耦合电解水制氢是一种可持续、无污染、高效的制氢方式。目前电解水制氢技术主要使用碱性电解系统和PEM(质子交换膜)电解系统,但是这两种技术路线都依赖高纯淡水作为水源。 据测算,电解水制氢每生产1公斤氢大约需要9升纯水,如果电解水制氢大规模推广,势必对人们赖以生存的淡水资源产生巨大的压力。 因此,人们把目光投向了储量占全球总水量96.5%的海水,电解海水制氢可以减少淡水资源的压力。随着海洋可再生能源发电技术(如海上风电、潮汐能等)的逐渐完善,海水直接电解系统可就地将海洋可再生能源转化成氢气进行运输利用,或将成为一种能源高效储存和利用的新方式。 与淡水不同,海水成分非常复杂,涉及的化学物质及元素有92种。海水中所含有的大量离子、微生物和颗粒等杂质,会导致制取氢气时产生副反应竞争、催化剂失活、隔膜堵塞等问题。而氯离子氧化反应 (COR)会在电解槽阳极产生腐蚀性“游离氯”物质,并对海水电解槽的安全性、效率和耐久性带来重大挑战。此外,在制氢完成后是否会产生有危险性的高盐,并把高浓度的有毒氯气排回海洋环境。这些问题都有待解决,因此目前有许多科学家在致力于这方面的研究。 此前,媒体跟踪报道了海水制氢的技术突破。 近日,一个美国研究团队在海水直接电解制氢技术上又取得了新的突破。由美国能源部SLAC国家加速器实验室和斯坦福大学的研究人员领导的团队,开发了一种耐海水的双极膜电解槽,该设计被证明在不产生大量有害副产物的情况下成功地产生了氢气。最新研究成果已于近期发表在了《焦耳》杂志上。 1 耐海水双极膜电解系统 SLAC和斯坦福大学的博士后研究员约瑟夫·佩里曼(Joseph Perryman)说:"海水中有许多活性物种可以干扰水电解制氢的反应,而使海水变咸的氯化钠是罪魁祸首之一。特别是,进入阳极并氧化的氯化物会缩短电解系统的使用寿命,并且由于包括分子氯和漂白剂在内的氧化产物的毒性,实际上电解系统可能变得不安全。" 图说:质子交换膜(PEM) 电解槽和双极膜(BPM)电解槽 因此,该团队通过控制对海水系统最有害的元素——氯化物来开始他们的设计。为了处理海水,该团队实施了双层膜系统,并使用电解对其进行了测试。实验中的双极膜可以获得制造氢气所需的条件,并同时减少氯化物进入反应中心。 图说:双极膜水电解槽(BPMWE)和质子交换膜水电解槽 ( PEMWE )设备原理图 理想的膜系统具有三个主要功能:从海水中分离氢气和氧气;有助于仅移动有用的氢离子和氢氧根离子,同时限制其他海水离子;并有助于防止不良反应。将所有这三种功能同时捕获是很困难的,该团队的研究旨在探索能够有效结合所有这三种需求的系统。 具体来看,双极膜 (BPM)由阳离子交换层(CEL) 和阴离子交换层(AEL) 组成,集成到双极膜水电解槽 (BPMWE) 装置中。在实验中,适当设计的 BPMWE与不对称的电解质进料相配合,其中海水只存在于阴极,相互兼顾了限制 Cl-交叉到阳极的CEL(由于阳离子传输的选择性)和提供局部碱性阳极pH值的AEL(其中OER催化剂具有高选择性并减轻COR)的优势,从而形成一个固有的离子耐受性的海水电解槽。 图说:耐海水双极膜电解系统 来源:SLAC 国家加速器实验室 在双极膜水电解槽系统中,质子(即正氢离子)穿过膜层之一到达可以收集它们的地方,并通过与阴极(带负电的电极)相互作用转化为氢气。而系统中的第二层膜仅允许负离子(例如氯离子)通过。在该团队的实验中,带负电的膜被证明能高效地阻挡几乎所有的氯离子,而且他们的系统在运行时不会产生漂白剂和氯气等有毒副产物。 2 更持久的海水直接电解能力 研究人员用盐水进料评估了BPMWEs的离子传输特性、性能、选择性和耐久性,并将其与单极质子交换膜水电解器(PEMWEs)进行了比较。实验展示了BPMWE装置可在持续电解过程中使用从太平洋(美国加州半月湾)收集的真实海水来产生H2和O2,电流密度为250 mA cm-2。 图说:实际海水电解过程中的设备稳定性比较:BPMWE(蓝色)和 PEMWE(灰色);(A) 海水作为阴极进料,去离子水作为阳极进料,以及 (B) 海水进料到两者阴极和阳极。 在 250 mA cm -2下连续 BPMWE 运行 >100 小时后,仅形成法拉第效率 (FE)为 0.005% 的游离氯,因此据信对观察到的电压衰减率没有显著影响。在相同的不对称海水条件下,PEMWE 在大约 50 小时后失效,并且在运行的前 24 小时内迅速产生比 BPMWE 在 >100 小时的运行过程中更多的游离氯 (~20 μM)。这种加速的 PEMWE 电压衰减显示了腐蚀性游离氯的形成会缩短设备寿命。 当海水被引入阴极进料和阳极进料时,相对于对称去离子水进料条件,BPMWE 的总电池电压增加了 0.90 V。PEMWE 在将真正的海水添加到其进料中后没有量化电压尖峰,因为电压迅速增加直到在运行 3 分钟内失效,这可能是由于在其酸性阳离子交换层(CEL)处产生腐蚀性游离氯物质环境。在将海水供给阳极和阴极进行 3 分钟的电解后,PEMWE 的 COR 法拉第效率 (FE)为 10%,而 BPMWE 在 7 小时的直接、未处理的海水电解中没有产生任何可检测的游离氯物质。 3 未来 研究人员表示,除了设计海水制氢膜系统外,该研究还让人们更好地了解海水离子如何穿过膜。这些知识也可以帮助科学家为其他应用设计更坚固的膜,例如生产氧气。 接下来,该团队计划通过使用更丰富且更容易开采的材料来构建电极和膜,从而改进它们。该团队表示,这种设计改进可以使电解系统更容易扩展到为能源密集型活动(如交通部门)生产氢气所需的规模。 研究人员还希望将他们的电解槽带到 SLAC 的斯坦福同步辐射光源 (SSRL),在那里他们可以使用该设施的强 X 射线研究催化剂和膜的原子结构。 “绿色氢技术的未来是光明的,”SLAC 和斯坦福大学教授兼 SUNCAT 主任 Thomas Jaramillo 说。“我们获得的基本见解是为未来创新提供信息以提高这项技术的性能、耐用性和可扩展性的关键。” 海洋是地球上最大的氢矿,向大海要水是未来氢能发展的重要方向。根据国际氢能源委员会发布的《氢能源未来发展趋势调研报告》, 2050年全球氢能源需求将增至目前的10倍,至2070年将达到5.2亿吨。在氢能需求侧庞大规模的拉动下,加之技术层面的不断突破,海水直接制氢路线工业化曙光已现,将为氢能万亿级市场的实现提供强大动力。