《《微纳结构增材制造工艺与装备》项目正式启动》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-11-09
  • 11月3日,国家重点研发计划——《微纳结构增材制造工艺与装备》项目启动会在上海世博中心隆重召开。上午,上海普利生机电科技有限公司(以下简称普利生)作为项目牵头单位联合东南大学、中国科学技术大学、华中科技大学、华东理工大学、南京大学、南京航空航天大学、长春理工大学等7所高校,以及苏州赛菲集团有限公司,向与会专家组成员就项目具体实施方案进行汇报。  会上,作为项目主管单位,科技部高技术研究发展中心陈智立处长指出,项目申报难度大,立项来之不易,作为项目主持单位,希望普利生发挥项目牵头单位作用,做好统筹、协调、监督的工作,对微纳3D打印 技术研究起到积极的引导和引领作用。  专家组成员在听取汇报后对项目后续工作可行性表示肯定,并针对微纳3D打印技术难点提出宝贵意见。同时,专家们表示,微纳3D打印如今已受到相关部门与社会各界的高度关注,项目将对生物医疗、可穿戴设备、生物科技、微电子等领域的发展将产生深远影响,希望项目组攻坚克难,不断取得新的突破。  会后,在上海市相关领导的见证下,项目正式启动。启动仪式上,科技部代表陆蔚华女士对此次普利生成功申报重点研发计划表示祝贺,并希望普利生能努力将此项目做成榜样,做出典范。  作为牵头单位能够承担此次国家重点研发计划,不仅意味着国家对普利生技术实力的肯定,也展现出普利生对于行业的引领能力。相信未来对于推动整个3D打印行业的技术进步、技术创新、人才培养都具有积极影响。  微纳3D打印技术和“传统”3D打印的主要区别在于微纳3D打印的精度能达到微米乃至亚微米级别。这一特性使得微纳尺度3D打印能制造微观级别的器件,如微流控芯片,细胞支架,微传感器等,将成为未来3D打印的主要发力点。  微纳制造一直是世界科学技术的前沿,可以获得和宏观尺度下不同的特性。传统工艺目前往往采用和芯片制造类似的mems工艺,成本非常高昂,难以加工复杂三维结构。而普利生将运用其先进的微纳3D打印技术,使复杂部件的定制化更加容易,生产速度也较“双光子微纳3D打印技术”快上千倍。正是因为这一跨时代技术,普利生才获得评审专家的青睐,在众多强手中脱颖而出。

相关报告
  • 《“纳米制造的基础研究”重大研究计划:“中国制造”开启纳米精度时代》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-02-25
    • 纳米制造技术涉及信息、材料、环境、能源、生物医学、农业、航空航天和国防安全等众多领域核心产品的制造,对未来国家战略新兴产业的发展起到重要的支撑作用。纳米制造已成为世界发达国家技术竞争的制高点。 为提升我国纳米制造领域的源头创新能力,国家自然科学基金委员会(以下简称“自然科学基金委”)于2009年正式启动了“纳米制造的基础研究”重大研究计划,以解决国家重大需求为导向,发展原创的纳米制造新原理与新方法,致力于解决我国纳米制造的瓶颈问题与“卡脖子”技术难题。 经过8年的通力协作与奋斗,纳米制造过程的尺度、精度与批量制造相关的若干关键科学问题与技术难题得到解决,纳米制造工艺与装备的理论体系与技术基础初步建立,为纳米制造的一致性和批量化提供了理论基础和技术装备支持——中国制造开启了纳米精度时代! 本期自然科学基金版将总结该重大研究计划取得的研究进展,展示该计划取得的研究成果。 “精度”上的创新 “明确我国科技创新主攻方向和突破口,努力实现优势领域、关键技术重大突破,主要创新指标进入世界前列。”2018年5月,习近平总书记在两院院士大会上对“创新”提出了新要求。这也是半年来科学家在为自然科学基金委重大研究计划“纳米制造的基础研究”梳理总结成果时,不断对照的标准。 “什么是创新?创新,就是把好的点子做出来。”2019年1月,该重大研究计划画上圆满句号时,中国工程院院士、该重大研究计划专家指导组组长、西安交通大学教授卢秉恒对《中国科学报》这样阐述他心中的“创新”。 时间回溯至20世纪初,美国国家纳米技术计划(NNI)的启动,掀起了纳米科学和技术的热潮。随后,包括生物分子马达、纳米机器人、纳米传感器、纳米智能器件等在内的一系列纳米科学研究成果不断在实验室涌现。 当时,我国机械制造领域的专家敏锐地意识到,作为纳米科学走向纳米技术的桥梁,纳米制造将成为世界发达国家技术竞争的制高点。2009年,该重大研究计划的资助下,中国制造领域的专家联合相关领域的科学家开始探讨如何布局中国纳米制造未来发展。 “纳米制造的基础研究”重大研究计划亦在彼时启动酝酿。专家们将“纳米制造”定义为“通过纳米精度制造、纳米尺度制造、跨尺度制造为产品和器件提供一定功能的过程”。 卢秉恒和现任清华大学机械学院院长、中国科学院院士雒建斌分别出任该重大研究计划专家组正副组长。“我们的考虑是,通过这个重大研究计划,面向我国重大战略需求,引领中国制造精度水平的提升”——他们提出了这样的目标。 2019年1月,该重大研究计划顺利通过评估。8年来,在该重大研究计划支持下,科学家们取得的多项成果带动制造学科取得跨越发展。评估会上,专家组自豪地评价:“中国制造开启了纳米精度时代!” 把论文写在生产线上 近年来,有关“卡脖子”技术的议题在国内备受关注。科学家们认识到,只有突破关键领域的核心技术,才能彻底消除“卡脖子”的隐忧。而要实现关键领域核心技术的突破,首先要有好的点子——要从中国自己的基础研究做起。 “中国在芯片制造装备方面起步很晚,初始阶段主要是电子学专家研究集成电路,几乎没有装备领域的大团队从事芯片装备的研发。”雒建斌坦言。直到2000年,我国高校和研究院所才逐步形成了相关的研究团队,陆续开展芯片制造理论、工艺和装备研发。 庆幸的是,作为我国资助基础研究的主渠道,自然科学基金委在2009年启动该重大研究计划时,布局了突破芯片制造相关核心技术的基础研究。 8年里,科学家们从基础理论的“好点子”开始,揭示了纳米尺度与纳米精度下加工、成形、改性和跨尺度制造中的尺度效应、表面/界面效应等规律,建立了纳米制造理论基础及工艺与装备原理,为实现纳米制造的一致性与批量化提供了理论基础。 例如,清华大学的纳米制造团队提出了化学机械去除理论,实现了单晶硅原子层的可控去除,相关结果发表在《自然—通讯》上。美国科学促进会曾评价:“该发现开创了在原子精度实现电子材料加工的新方法,这将是未来电路元器件加工精度进一步提升至原子尺度控制水平的关键。”关于抛光颗粒的研究作为成果“摩擦过程的微粒行为和作用机制”的主要内容获得2018年度国家自然科学奖二等奖。 随后,科学家将基础研究成果拓展至工程应用。2015年10月,国产首台12英寸抛光设备进入芯片制造大生产线,其主要技术指标达到或优于国际先进水平,有效实现了关键装备国产化。 没有该重大研究计划支持下的基础研究原理创新,就没有生产线上的高端机器。不过,在科学家看来,该重大研究计划形成的新原理依然有许多未实现工业应用,对“卡脖子”技术的贡献还有待进一步提升。 学科交叉共融 回顾8年来的研发经历,雒建斌对学科交叉共融感触颇深。“装备本身是个大型机械,各个机构的设计离不开机械原理学科,运动系统的控制离不开自动化学科,而抛光过程则需要物理和化学知识。”他告诉《中国科学报》。 据了解,在强调学科交叉共融方面,该重大研究计划突破传统的一级学科交叉,实现跨学部交叉。统计数据显示,8年来,在该重大研究计划资助的项目中,交叉项目资助金额占比18.5%,资助项目论文成果涉及28个学科。 难能可贵的是,这些交叉学科又在主要的科学问题上得到共融。例如,不同学科的科学问题都具有明显的“制造”属性,即如何保证纳米制造过程的高精度、批量化和一致性。 西安交通大学纳米制造研究团队自2001年起从事纳米压印方面的研究,如今已将压印工艺的精度提高到纳米量级。压印工艺采用机械制造领域模板复形的概念制造纳米结构,可以形象地理解为用“月饼印”在月饼表面印出花纹。 据该团队青年科学家邵金友介绍,在传统压印技术难以走向工程应用的现实情况下,2008年后,团队发明了界面电荷调控的纳米压印技术,突破了尺度效应,使压印力和脱模力都得到大幅降低,这一技术就是制造学科与物理学科交叉融合的结果。 另外,在该重大研究计划集成项目支持下,制造专家也与化学家的思想碰撞出火花。将电化学反应原理与模板约束成形技术相结合,厦门大学田中群院士研究团队发明了以约束刻蚀剂层技术(CELT)为支撑的纳米结构模板调制成形新方法,以接触电势诱导腐蚀的去除方式实现了半导体材料的电化学直接压印成形,缩短了半导体材料成形的工艺链。业内专家认为,这种化学腐蚀和压印相结合的方法,扩大了压印材料的种类。 凝聚人才队伍 在卢秉恒看来,凝聚全国范围内的微纳制造人才,是该重大研究计划重要贡献之一。“8年前,我国制造行业以传统制造为主,大家着重于研究讨论锻造、焊接、冲压等传统方法。”他回忆。 该重大研究计划实施的8年,逐渐形成了我国微纳制造领域的“国家队”。许多年轻科研人员的科研生涯深受该重大研究计划的影响,从参与者逐渐成为科研骨干人才。 “自然科学基金委组织的重大研究计划提供了一个平台,把人才聚集起来。”一名重大研究计划科学家告诉《中国科学报》,“在参与重大研究计划的过程中,我认识了许多同行,在各类交流中互相启发和帮助。” 据统计,该重大研究计划实施期间,8位科研人员当选中国科学院或中国工程院院士,18位科研人员获得国家相关人才计划资助,另培养了974名博士后、硕士、博士。在科学家们看来,这都是该重大研究计划在人才凝聚方面交出的优异成绩单。 面向未来,卢秉恒指出,科学家们正在争取新一期重大研究计划的支持。“希望能将精度从原子层级做到原子级,为发展人工智能、生命科学等科学前沿应用,制造三维芯片提供支持。”他憧憬着。
  • 《2018中国增材制造大会暨展览会现已启动》

    • 来源专题:北京市经济和信息化委员会监测服务平台
    • 编译者:zhangmin
    • 发布时间:2018-05-16
    • 2018中国增材制造大会暨展览会(AMCC 2018)现已启动。本次展会将于2018年7月26-28日在杭州国际博览中心举办,届时增材制造行业政府相关领导,企业精英,专家学者将汇聚一堂,相互碰撞思想,分享观点,交流经验,共同探求增材制造产业发展的未来之路。 当前,增材制造被世界各国列为未来产业发展新的经济增长点。加快推进增材制造产业发展是我国加快制造业转型升级、建设制造强国的重要手段。在此背景下,为贯彻落实《增材制造产业发展行动计划(2017-2020)》中关于“发挥中国增材制造产业联盟桥梁和纽带作用”, 推动增材制造产业快速发展, 促进行业市场应用与推广,在工业和信息化部、浙江省人民政府指导下,由杭州市萧山区人民政府和中国增材制造产业联盟联合承办的年度行业盛会—中国增材制造大会暨展览会(AMCC)将于2018年7月26在杭州国际博览中心再次拉开序幕。作为增材制造领域的年度行业盛会,AMCC 2018将为行业搭建集技术交流、产品展示、市场拓展与贸易洽谈为一体的专业化会展平台。 全产业链官方展示平台,多方位展示国内外增材制造领域行业发展 展览包括核心装备及部件展区、技术应用展区、专用材料展区、服务支撑展区、科普互动展区、高校展区、大赛专区七个展示区,面积近20000平米,全面展示国内外增材制造领域全产业链技术与产品。共有300余家企业与用户单位集中亮相,展示行业最前沿技术、产品与应用,600多家航空、航天、船舶、汽车、核工业、医疗、教育、文化创意等重点应用领域企业莅临合作洽谈。 截至目前,已有GE、HP、Siemens、3D Systems、Stratasys、国家增材制造创新中心、国家增材制造产品质量监督检验中心、中国科学院太空制造技术重点试验室、先临三维、鑫精合、三迪时空、喜马拉雅、中航迈特、航天科工、德迪、上海联泰、安徽春谷、西安赛隆、探真激光、三帝科技、中科煜宸等百余家科研院所、国内外企业报名参展,更有来自广东、四川、安徽、黑龙江、渭南等产业聚集区的地方展团集中亮相,为行业带来最新技术、产品与应用解决方案的全面展示。 聚焦行业发展热点话题,分享前沿技术与创新应用 大会同期组委会将邀请增材制造行业主管部门领导、专家学者、企业家等共同探讨产业政策导向与未来发展变革脉动,探究前沿技术进展与应用前景趋势,发掘行业面临核心问题与发展瓶颈并寻找破解良方。他们将就增材制造领域产业政策、创新技术、应用方向和商业模式等行业热点话题进行深入的探讨和交流。 展会同期,大会将举办中国增材制造高峰论坛,航空航天、生物医疗、汽车工业和增材制造生态体系等专题论坛,中国增材制造产业联盟会员大会也将同期举办,届时业界大咖汇聚一处,从产业发展宏观战略到前沿技术与创新应用,共谱产业蓝图。 同期活动精彩纷呈,助力国内增材制造行业腾飞 展会同期将举办中国增材中国增材制造创业创新大赛、增材制造桌面机性能大比拼等专业活动,引导行业健康成长、助力行业发展。 AMCC经历两年发展,规模与影响力逐年提高,已然成为国内企业高度认可的,集增材制造产业政策宣讲、新品展示、发展趋势、技术交流、应用对接为一体的年度盛会。7月杭州,我们期待您的参与!