《中国科学家取得人工合成淀粉新突破,有助于缓解粮食危机》

  • 来源专题:生物安全
  • 编译者: 闫亚飞
  • 发布时间:2023-03-19
  • 据生物谷公众号2月28日消息,中国科学院天津工业生物技术研究所体外合成生物学中心与中国农业科学院生物技术研究所合作,在以玉米秸秆为底物,高效合成淀粉和微生物蛋白方面取得新进展。研究人员对多酶分子机器核心元件进行了设计改造并对合成线路进行了优化,大幅度提升了秸秆转化淀粉的效率,为推进产业化应用奠定了基础。
  • 原文来源:https://mp.weixin.qq.com/s/x_4eevrHC0kvwoo5Nxo2OA
相关报告
  • 《2023 Science年度十大科学突破》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-12-20
    • 2023年12月14日,Science杂志的编辑团队评选出年度十大科学突破,其中包括一项科学突破冠军奖以及九项科学突破入围奖。它们代表这一年中最重大的科学发现、科学进展及未来趋势。 2023年度十大科学突破之首: 减肥药GLP-1有望战胜肥胖 Jennifer Couzin-Frankel 在一项大型试验中,GLP-1药物被证明也能改善心脏健康,其有望治疗更广泛的疾病。 肥胖既是一场个人的战斗,也是一场全民健康危机。在美国和欧洲,分别有大约70%和超过50%的成年人受到超重的影响,而在中国,这一数字约为34.8%。对脂肪的“指控”可能是致命的——肥胖被认为是2型糖尿病、心脏病、关节炎、脂肪肝和某些癌症的诱因。(体重指数BMI=体重(kg)/身高(m)的平方,指数大于25和30分别被定义为超重与肥胖;而针对中国人群体质,这一标准则为24与28。) 然而,针对肥胖的药物治疗却有着一段令人遗憾的过去。它往往与减肥的社会压力以及人们普遍认为肥胖反映了意志力薄弱交织在一起。从20世纪40年代针对女性销售的含有安非他命和利尿剂的“彩虹减肥药”,到20世纪90年代引发了灾难性的心脏和肺部疾病的减肥药芬芬(fen-phen)的兴起和衰落。历史上人们一直未能找到安全且成功的减肥药。但现在,一类新的疗法正在打破陈规,人们对其可能降低肥胖率及治疗相关慢性疾病抱有极大希望。这些药物模拟了一种名为胰高血糖素样肽-1(GLP-1)的肠道激素,它们正在以令人兴奋和不安的方式重塑医学、流行文化,甚至影响全球股市。 GLP-1最初是为治疗糖尿病开发的,它可显著减轻体重,且副作用大多可控。GLP-1的减肥机制是通过与胃肠道GLP-1受体结合,抑制胃肠蠕动、延缓胃排空;并通过与中枢GLP-1受体结合,增强饱腹感、抑制食欲。今年,临床试验发现,它们还可以减轻心力衰竭的症状以及降低心脏病发作和中风的风险。这是迄今最令人信服的证据,证明这些药物除了减肥之外还有其他主要的健康益处。基于这些原因,《科学》杂志将GLP-1药物评选为2023年度十大科学突破之首! GLP-1的起源与迭代 GLP-1的故事经过了几十年的发展,起初,它与对抗脂肪无关。20世纪80年代初,研究人员在研究糖尿病和血糖调节时发现了GLP-1。第一种GLP-1药物是艾塞那肽(Byetta),2005年被批准用于治疗2型糖尿病。令人惊讶的是,它的来源并不是人类激素,而是从巨型蜥蜴的毒液中提取的一种类似肽。大约5年后,诺和诺德公司发布了利拉鲁肽(Victoza),以人类GLP-1激素为模型。它最初也是一种糖尿病药物,但后来在2014年末,美国食药监局批准其可用于治疗肥胖。 直到2年前,诺和诺德的下一代产品,司美格鲁肽在美国获批用于体重管理,这类药物才真正火了起来。与其上一代产品相比,司美格鲁肽仅需每周注射一次,而无需每天注射。在一项关键的试验中,使用该药物的人在大约16个月内体重减轻了15%,这是前所未有的。自此,这种狂热愈演愈烈。根据美国的电子健康记录,今年美国有1.7%的人使用了Wegovy或Ozempic(二者主要有效活性成分均为司美格鲁肽)。诺和诺德公司的市值现已超过了其所在国丹麦的国内生产总值。但在这些飙升的销售额中,隐藏着一个至关重要的问题:GLP-1药物真的能保护肥胖患者的健康吗?在今年,我们得到了答案:是的。 今年8月,一项针对529名肥胖和心力衰竭患者的试验发现,使用司美格鲁肽的患者在1年后心脏的改善是安慰剂对照组的几乎两倍。与此同时,诺和诺德宣布,在一项针对17,000名超重和心血管疾病患者的更大规模试验中,使用司美格鲁肽的患者的心脏病发作和中风的风险比安慰剂组低20%;这项研究发表在今年11月的《新英格兰医学杂志》上。这些试验首次表明,GLP-1药物对健康的益处超出了减肥本身。 探索潜能与警惕副作用 GLP-1药物的使用范围正在以其发明者无法想象的方式迅速扩大。因用药患者描述他们在接受治疗时对于酒精和烟草的渴望减少,研究人员开展了其针对药物成瘾的试验。而基于GLP-1药物可针对大脑炎症的证明,临床试验也在测试其用于治疗阿尔茨海默病和帕金森病的潜能。但医学上的突破很少是直截了当的,围绕GLP-1的热情也带有不确定性,人们甚至发现了一些不祥之兆。就像几乎所有的药物一样,这些畅销药也有副作用和未知因素,包括恶心和其他胃肠道问题在内的并发症导致一些患者放弃用药。9月,美国监管机构更新了Ozenpic的药品标签,以表明其存在导致肠梗阻的潜在风险。10月,一个加拿大研究团队报告称,出现这种并发症以及胰腺炎的几率增加。 2022年的一项研究报告称,司美格鲁肽促进了肥胖青少年群体平均16%的体重降低。这项研究带来了希望,但也令人担忧。医生们担心那些不超重不肥胖的人群也会通过药物治疗来减肥。并且我们还有一个重要的问题是:GLP-1是必须终身服用的药物吗?目前看来,尽管没有定论,但答案也许是肯定的。研究人员报告称,在人们停止治疗一年后,其减轻的体重的三分之二又反弹了回来。对于越来越多将肥胖视为慢性疾病的研究人员来说,持续治疗的必要性并不奇怪。但这些药物高昂的价格也令人望而却步——每月用药的价格超过1,000美元。 下一个展望 在这种背景下,下一章已经展开:模拟多种激素的疗法似乎具有更显著的减肥效果。其中一种是礼来公司的替尔泊肽。在2022年获批治疗糖尿病后,又于今年11月在美国获得减肥批准。一项大型临床试验报告称,使用该药的人体重最多减轻了21%。随着GLP-1故事的继续,有一件事是明确的:这些新疗法不仅重塑了肥胖的治疗方式,而且重塑了人们对肥胖的理解:将其视为一种源于生物学的慢性疾病,而不仅仅是简单的意志力薄弱——这一崭新的理解与药物研发同等重要。 其他9项Science年度科学突破分别为: 抗体疗法在减缓阿尔茨海默病方面取得进展 Jennifer Couzin-Frankel 医学对全世界数千万阿尔茨海默病患者而言几乎没有什么帮助,为数不多的获批疗法也只针对于症状。但在今年1月,美国监管机构批准了第一种药物,该药物通过解决疾病的潜在生物学问题,明显减缓了患者认知能力的下降;相关的第二种治疗方案也紧随其后。虽然二者都不能彻底治愈该疾病,且都存在严重风险,但它们还是为患者和家人带来了新的希望。 阿尔茨海默病患者的大脑中有一种名为β淀粉样蛋白的缠结蛋白质团,多年来,科学家们一直在争论去除它们是否有助于患者。此前的各种疗法均以失败告终。但在一项新的为期18个月的关键试验中,与安慰剂组相比,这种名为lecanemab的抗淀粉样单克隆抗体,将认知能力的丧失减缓了27%。这足以说服美国和之后的日本监管机构批准它。而在今年夏天的试验结果中,另一种同样针对脑淀粉样蛋白的抗体治疗药物多奈单抗,在略有不同的患者群体中,与安慰剂组相比,将认知能力下降的速度减缓了35%,美国随时可能批准其上市。这两种疗法均为静脉注射。 尽管阿尔茨海默病的研究人员、医生和患者都在庆祝,但他们也看到了黑暗的一面:药物治疗带来的脑肿胀和脑出血的风险,在极少数情况下将会是致命的。在阿尔茨海默病患者群体权衡抗淀粉样药物的益处和风险的同时,人们也渴望获得更多的数据和信息。认知迟钝的适度改善能随着治疗的时间而增长吗?还有,如果这些治疗足够早地给予疾病高危人群,是否可以延缓症状的出现呢? 寻找天然氢源的热潮 Eric Hand 1859 年,Edwin Drake将20米的铸铁管插入了美国宾夕法尼亚州泰特斯维尔城(Titusville)的地下,找到了石油。这口井开启了美国寻找石油的热潮并改变了世界。今年我们则见证了另一场能源热潮的开始。与石油不同,这场热潮基于地球内部自然产生的氢气,这种气体可能会成为气候的解药,而不是毒药。 传统的地质学认为地球上不应储存着任何氢气。由于氢气富含化学能且具有反应性,研究人员认为在地球地壳中,大部分氢气将被微生物消耗或转化为其他化合物。但令人惊讶的是它竟然存在于这么多地方,这也引发了新的假设。一些人认为它是从地球核心泄漏出来的,或者是因地壳中放射性元素将水分子打破而产生的。但许多研究人员相信,在高温高压下,当水与富含铁的矿物质发生反应时,氢气就会生成。 这场能源热潮的诞生还可以追溯到另一个不起眼的城镇:马里共和国的布拉克布古(Bourakébougou)。2012年,工程师们拔掉了在1987年由一根香烟引发爆炸后用水泥封闭的一个钻孔,发现它喷出的气体98%是氢气。人们由此连了一台发电机,为该村庄提供了第一批电力,而产生的废物只有水。奇怪的是,经过十年的抽取后,钻孔中的气体压力并没有下降,这表明地底深层正源源不断地补充氢气。 受这一发现的启发,勘探队现在在除南极洲以外的每个大陆都发现了大量氢气储备的迹象。风险投资正涌向如Koloma这样的初创公司。该公司七月份手握9,100万美元的资金走向市场,其中包括比尔·盖茨设立的突破能源基金的投资。九月份,美国地质调查局在雪佛龙和英国石油公司的支持下启动了一个研究联盟,而美国能源高级研究署也启动了一项价值2,000万美元的天然氢研发计划。美国地质调查局一项未发表的研究表明,地球上可能储存有1万亿吨氢气,足以满足未来数千年燃料和肥料不断增长的需求。 在全球机构中系统性改变职业早期科学家的待遇 Katie Langin 几十年来,研究生和博士后一直抱怨工资低和工作条件不佳。而在过去的一年里,世界多地的职业早期科研人员联合起来要求改变现状,为其所在群体争取应得的利益与权利。 去年冬天,加州大学系统的48,000名学术工作者举行了美国历史上最大的学术罢工,为研究生和博士后赢得了可观的加薪。在加拿大,数千名学术工作者于5月举行了为期一天的大规模抗议活动,要求增加联邦对研究生和博士后的资助。在德国,职业早期科研人员为改革博士后合同而奔走。“我们需要为未来一代科学家提供更好的条件。”——哥伦比亚大学分子生物学家álvaro Cuesta Domínguez 越来越多的人在毕业后选择前往利润更丰厚的行业工作,这使得近年来越发难以填补空缺的博士后职位。许多教职员工和大学管理人员都认为变革是必要的,但应对预算的压力也很有挑战性。教授们通常用研究经费支付职业早期科研人员的工资,或者他们可能被迫雇佣更少人数的研究生和博士后。资助机构是否会增加拨款支持,以支付职业早期科学家的加薪,还有待观察。与此同时,一些大学已经采取行动,帮助院系适应不断上涨的人事成本。例如,加州大学伯克利分校的研究人员希望将帮助教授支付加薪费用的短期措施与长期战略规划和财政预算相结合,最终将形成一个人人都能茁壮成长的科研生态系统。 接近美洲远古人类定居的历史真相 Lizzie Wade 美洲的人类历史故事可能迎来了新的起点。此前人们认为,最早的美洲移民是通过曾经连接白令海峡的陆地从亚洲迁徙而来,大约在16,000年前沿着太平洋海岸向南行进。但在今年,研究人员验证了另一个引人注目的结论,将这一时间提前了至少5,000年。此前就有一些遗址暗示人类可能在标准理论所认定的时间之前进行了迁徙。例如,来自智利南部的削制石器和烧焦的动物骨头可以追溯到18,500年前,而墨西哥一个洞穴中的疑似石器可以追溯到26,000年前。但是这些发现并没有提供有人类活动的明确证据,因此大多数考古学家仍对此持怀疑态度。 在2021年,在美国新墨西哥州白沙国家公园工作的研究人员宣布了一个或许是颠覆性的发现:在一座古老湖泊泥泞的岸边留存有明显的人类足迹,其可追溯到21,000到23,000年前。这些足迹周围的相同地层中留存有一些草本水生植物的种子,研究人员通过放射性碳测年法推断了其年代。但这些种子可能从溶解在湖水中的沉积物里吸收了更为古老的碳元素而增加了它们的测量年代,因此学界仍存在疑虑。于是,白沙团队使用了来自陆生植物的花粉和嵌入在足迹之间以及下方的沉积物中的石英颗粒重新确定了足迹的年代。他们在十月份报告称,新的测定年代与最初论文完全吻合。 如果这一时间是正确的,这些足迹则是在上一冰河时代的顶峰时期留下的。当时冰川覆盖了加拿大,这说明人类必定是在这些冰川形成之前进入了美洲。今年对这一足迹年代的重新确定可能引发考古学家对其他有争议的遗址重新进行评估,并可能促使人们更快地挖掘其他冰河时代的沉积物,以寻找更多的证据和惊喜。 地球的碳泵正在减速运行 Paul Voosen 如果说海洋拥有一颗心脏,那么它就位于南冰洋。在南极洲海岸附近的一些偏远地区,海洋的表层水向底部沉淀,下沉的水带走了大气中的热量、氧气和二氧化碳,并将它们储存在深渊中,再慢慢向北扩散。这是地球翻转环流的主要过程之一,连接着世界上所有的海洋,帮助捕获了人类每年排放的三分之一的碳。许多研究人员认为,当这个碳泵涌动或减速时,它可能会进一步放大气候变化。 今年,一些研究明确指出这个碳泵面临着迫切的危机。令人不安的迹象首次出现在几年前,最值得注意的是深海阿尔戈机器人采集到的数据,它的探测器可以自主漂游到4,000米的海洋深处。人们发现南极底部水温升高,体积缩小,这两个迹象表明洋流的流速减缓,且使得上方较温暖的水体能够侵入。更直接的证据来自一项于今年3月发表在《通讯-地球与环境》杂志的研究。研究人员将该地区历史船只测量的有限记录输入到气候模型中,结果显示自上世纪70年代以来,环流流速已减缓了多达20%。随后在五月,一项发表在《自然气候变化》上的研究利用船只和浮标的测量数据,认为从1992年到2017年深层水流速度减缓了近30%。传统气候模型曾预测环流可能会减缓,但没有这么快。新数据表明,曾被认为是遥不可及的威胁现在已经迫在眉睫。 目前,对于为什么会发生环流减速的现象、到底有多少是人类活动导致的以及它如何影响气候,这些问题还没有明确的答案。但南极洲冰川融化产生的淡水很可能是主要原因,增加的淡水使周围的水变得更轻,不容易下沉。随着全球变暖的持续,冰川融化和洋流减速将进一步加剧。 巨型黑洞合并产生的星际信号在无声轰鸣 Daniel Clery 今年,天体物理学家捕捉到了人们长期寻找的一种微弱的宇宙轰鸣声。它事实上是宇宙中两个超大质量的黑洞相互环绕、紧密摩擦所产生的引力波。这一观测是迄今为止对这些庞大黑洞双星系统存在的最有力支持,其也体现了利用来自遥远恒星的信号来探测引力波是一种强有力的观测手段。星系的中心有重达太阳质量数百万倍或数十亿倍的巨型黑洞。当星系合并时,它们中心的黑洞可能最终被引力锁定在一个越来越紧密的轨道上。在这一堪称 “死亡螺旋”的最初阶段,地面的仪器还没有能力监测其发出的信号。但当两颗黑洞彼此接近到几光年的距离时,它们的环形运动会释放出低频但高强的引力波。这些引力波无法被激光干涉引力波天文台(LIGO)捕捉到。LIGO在2015年首次探测到了由两颗恒星大小的黑洞合并产生的引力波,当时被评选为2016 Science年度科学突破。为了探测那些持续几毫秒的引力波,LIGO测量了激光束在4公里长的真空管中传播的距离。但要捕捉由超大质量黑洞产生的长达数年的波则需要更长的距离。 为此,天文学家转向了对脉冲星的观测。这些是已经燃烧殆尽的星星,每秒会自转数百次,同时喷射出发射无线电波的粒子束流。当这些犹如灯塔光束的波掠过地球时,射电望远镜会记录这些波中像原子钟一样规律的脉冲。在过去的20年里,天文学家长期地监测了几十颗最有规律的脉冲星,寻找它们脉冲节奏中微小的变化。若某引力波经过,其会压缩或拉伸脉冲星与地球之间的空间,细微地改变脉冲到达地球的时间。 今年6月,全球范围内负责监测不同组脉冲星的5个团队共同宣布,通过15年的观测,他们已经将数据中的噪音降到了足够低的程度,使得剩下的数据反映了宇宙中超大质量黑洞双星所引发的合鸣,数目可能多达几百万个。这些团队现在正在寻找更多的脉冲星以便能够绘制这种轰鸣声的波形,并聚焦观测缓慢舞动的巨型黑洞所在的星系。 AI辅助天气预报的发展 Paul Voosen 气象学家用现代计算机模拟未来的大气状态,创造了现代的数值天气预测学科。尽管现在这门学科变得越发复杂且精密,可以提前几周时间做出可靠的天气预测,但它的原理仍与从前一样:使用大量的计算能力来求解控制大气的流体动力学方程。 在过去的一年里,人工智能(AI)已经开始改变这一现状。包括谷歌、华为和英伟达在内的科技公司已经训练了人工智能模型,可以提前10天预测天气,其准确性可与传统模型相媲美,甚至超过传统模型,而且计算开销要小得多。这些“深度学习”模型不是求解方程,而是基于来自欧洲中期天气预报中心(ECMWF)的数值模型在40年间的观测数据所训练出的模型。一旦经过训练,模型可在台式电脑上仅用时1分钟做出天气预测,而无需在超级计算机上运行2小时。 ECMWF已经开始制作自己的人工智能预报,其他气象机构也在争先恐后地追赶。新模型并不完美,它们很难预测某些基本特征,例如飓风强度。但研究人员预计,随着人工智能预报开始从传感器收集的直接天气观测中学习,而不仅仅是通过现有模型传递的数据,该技术会得到进一步发展。它们的速度也支持多次运行,以捕捉到所有在大气蝴蝶效应中产生的不确定因素。没有人期望传统的数值天气预报消失;例如,气候模型依赖于相同的方程求解范式,人工智能可能很难接管这些预测,因为其模型模拟的未来变化可能与过去的训练数据不同。但从长远来看,超级计算机驱动的气候模型的输出本身可能会成为气候预测人工智能的训练数据,后者最终可能会超过其导师。 抗击疟疾的新希望 Gretchen Vogel 今年,在通过疫苗来抗击疟疾的道路上有两个振奋人心的消息。经过大规模的评估,全球第一种抗疟疾疫苗Mosquirix确能显著降低幼儿的死亡率。幼儿是面对该疾病最脆弱的群体之一,仅在撒哈拉以南的非洲地区每年就有近47万幼儿因疟疾而死。现在,随着世界卫生组织的批准,名为R21 (或MatrixM) 的第二种疫苗也加入了抗击疟疾的行列。它的设计与Mosquirix类似,但生产成本更低、产量更大。它有助于填补疟疾疫苗供需之间的巨大缺口,每年能防止数万名儿童的死亡。 Mosquirix疫苗也被称为RTS,S,其功效有限,且其保护作用会随着时间很快减弱。在2019年,人们开启了对该疫苗的一个长年试点研究,加纳、肯尼亚和马拉维的近200万婴幼儿接种了该疫苗。到2021年,初步的测试结果使得世卫组织的官员相信该药物足够安全有效,可以批准其在更广的范围内使用。10月,世卫组织官员报告了试点阶段接受疫苗与未接受疫苗地区之间的对照。该疫苗使严重疟疾的发病率降低了22%。更意想不到的是,在接受了疫苗的地区,符合接种疫苗年龄的儿童死亡率 (事故除外) 比未提供疫苗的地区低了13%,这表明即使这一不完美的疫苗也可以挽救生命。但从现在到2025年,生产Mosquirix疫苗的葛兰素史克公司 (GSK) 只能产出1,800万剂疫苗,这仅可以为每年受疟疾影响地区出生的4,000万儿童中的450万提供疫苗接种 R21疫苗的问世则可以帮助填补这一空白。它由牛津大学开发,授权给了大型疫苗制造商印度血清研究所予以生产。该公司表示,它每年可以生产1亿剂疫苗,每剂价格在2至4美元之间,不到Mosquirix价格的一半。9月,饱受期待的R21 3期临床试验数据作为预印本发表。该试验涉及四个国家的4,800名儿童,其结果表明,尽管尚未对这两种疫苗进行直接的比较,在接种的前18个月内,R21至少与RTS,S同等有效,甚至可能更为有效。世卫组织表示R21有望在2024年为人们提供广泛接种。 百亿亿次超级计算时代的来临 Robert F. Service 经过十多年的努力,今年终于迎来了百亿亿次级的计算科学时代。美国橡树岭国家实验室的Frontier计算机成为首台向科学用户开放的公认百亿亿次级计算机,它能以每秒一百亿亿次运算的速度解决从气候到材料等领域的挑战 密歇根大学材料科学家所领导的项目便是成果之一。通过Frontier,研究人员能够将两个理论框架联合起来,以几乎完美的精度预测材料中多达60万个电子的行为,而以前的计算大约只能处理1,000个电子。这使得该团队能够模拟镁合金中缺陷的形成、生长和移动,这一进展有助于推动超轻材料的发展,用于研发更节能的汽车和飞机。 美国的两个国家实验室的研究人员也利用Frontier提高了美国能源部全球气候模型的分辨率。这是有史以来第一个能够融入整个地球范围内云的形成的物理模型,预计这一进展将极大提升气象预测人们对超级计算的探索才刚刚开始。美国阿贡国家实验室的一台百亿亿次级计算机目前正在进行向用户开放之前的最后调试。明年,新的百亿亿次级超级计算机预计将在美国加利福尼亚州和德国上线,法国和日本的其他超级计算机也将紧随其后,人们正以前所未有的规模打开科学之门。
  • 《2019年科学突破奖公布 9位科学家分享2100万美元奖金》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-10-18
    • 科学界最慷慨的奖项——突破奖公布了2019年获奖者名单。生命科学、基础物理学(包括一项特别奖)、数学三个大奖的共7个奖项、2100万美金,授予了对治疗由基因原因引发的婴儿死亡、超高分辨率成像、新型的电子材料、发现脉冲星做出重大成就的9位科学家,其中华人科学家庄小威、陈志坚与其他三位科学家分享生命科学奖。 弗兰克·本内特(Frank Bennett)和阿德里安·克赖纳(Adrian Krainer),安吉丽卡·阿蒙(Angelika Amon), 庄小威, 以及陈志坚获得2019年突破奖生命科学奖。 查尔斯·凯恩(Charles Kane)与尤金·米尔(Eugene Mele)2019年突破奖基础物理学奖,乔斯琳·贝尔·伯内尔(Jocelyn Bell Burnell)获得基础物理学奖特别奖。 2019年突破奖数学奖被授予文森特·拉福格(Vincent Lafforgue)。 还有6位在物理学和数学领域处于事业早期阶段的杰出青年科学家获得了总计60万美元的“新视野”奖,其中包括中国数学家许晨阳。 所有的获奖者,包括前不久公布的基础物理特别突破奖得主乔斯琳·贝尔·伯内尔都将参加11月4号周日举行的全网直播颁奖典礼。 生命科学奖 C·弗兰克·本内特(C. Frank Bennett),来自 Ionis制药公司(Ionis Pharmaceuticals);阿德里安·R·克赖纳(Adrian R. Krainer),来自冷泉港实验室(Cold Spring Harbor Laboratory)。 获奖理由:开发出一种有效的反义寡核苷酸疗法,用于治疗患有神经退行性疾病脊髓性肌萎缩症(spinal muscular atrophy,SMA)的儿童。 脊髓性肌萎缩症是一种罕见但具有破坏性的疾病,是导致婴儿死亡的主要遗传病因。许多患有脊髓性肌萎缩症的孩子会在两岁前死去。现在,患上脊髓性肌萎缩症已不再意味着死亡。药理学家C·弗兰克·本内特和生物化学家阿德里安·R·克赖纳基于他们对反义技术和RNA剪接的自然过程的发现,研发出第一种治疗脊髓性肌萎缩症的药物——Nusinersen(商品名为Spinraza,由Biogen经销)。此种药物于2016年获得FDA批准,是目前正在研发中的首批针对家族性自主神经功能障碍(FD)、胶质母细胞瘤和肝癌的新型反义疗法之一。这项工作也为使用基因沉默新疗法治疗亨廷顿氏症、肌萎缩侧索硬化症、脊髓小脑性共济失调、帕金森病和阿尔茨海默病创造了可能。本内特的家人在美国新墨西哥州阿兹台克经营酒店,他在那里长大;但在辅导员的鼓励下,他转而追求药理学研究事业,致力于寻找治愈严重疾病的方法。 克赖纳是东欧后裔,在乌拉圭蒙得维的亚长大;他崇敬孟德尔的科研工作,在高中时期就对遗传学产生了兴趣。 2004年开始联手研究脊髓性肌萎缩症之前,本内特和克赖纳就已经熟悉了彼此的工作,目前他们继续着合作关系。 安吉丽卡·阿蒙(Angelika Amon),来自麻省理工学院和霍华德·休斯医学研究所。 获奖理由:明确非整倍性(aneuploidy)的影响,这是一种染色体数目异常,由染色体分裂错误导致。 多出一条染色体可能引发极其严重的后果(如唐氏综合征、流产等)。实际上,在所有的癌症种类中,有80%存在染色体多余或缺失。出生于维也纳的分子生物学家安吉莉卡·阿蒙证明,不规则的染色体数目(即非整倍性)引发了一种应激反应,干扰了细胞的故障保险和错误修复系统——这反过来又导致基因突变快速累积。她希望对非整倍性的理解能让我们更好地了解癌症发展,并有助于识别新的癌症治疗靶点。阿蒙的行事准则被她自己称为“奶奶测试”——一个想法必须能够被简单地解释,才能引起她的兴趣。她提出简单的问题,得到了不起的答案。 庄小威(Xiaowei Zhuang),来自哈佛大学和霍华德·休斯医学研究所。 获奖理由: 开发极高分辨率成像技术,发现细胞隐藏的内在结构,这种方法超越了光学显微镜的空间分辨率限制。 庄小威是个神童。六岁的时候,她就能认识到施加在一杯水上的大气压,这令她在中国顶尖科技类大学担任空气动力学教授的父亲印象深刻。多年后,在显微成像技术黄金时期的黎明,在斯坦福大学做博士后的她将对物理学的兴趣转向了生物成像和对生物系统的探索。在哈佛大学庄小威自己的实验室里,她发明了一种超高分辨率成像方法(即随机光学重构显微术,STORM),利用状态可切换的荧光分子打破了传统显微镜的衍射限制。实验得到了分子和细胞结构的超高分辨率图像,这些细胞和分子的大小只有人类头发直径的万分之一。借助STORM技术,她的实验室发现了原本未知的细胞结构,例如大脑中的神经元内部周期性的膜骨架。 陈志坚(Zhijian “James” Chen),来自得克萨斯大学西南医学中心和霍华德·休斯医学研究所。 获奖理由:阐明了DNA通过DNA感受酶cGAS从细胞内部触发免疫及自身免疫反应的机制。 T细胞和其他类型的白细胞是免疫系统的一线“斗士”。陈志坚的研究为我们揭开了一种基础性先天免疫系统的面纱——这一系统能够将我们身体中的每个细胞调动或者重启,从而去对抗来自病毒、应激、辐射或其他方面的损害。陈志坚的实验室证明:由入侵者携带进来的(或从细胞核渗透出的)DNA会被一种特定蛋白识别,最终激活T细胞和白细胞。他目前正在研究将这种强大力量化为己用的方法,以期阻止疾病(例如癌症)的发展;同时他也希望能够在这种力量走上“弯路”导致自身免疫疾病(例如关节炎和红斑狼疮)发生时,找到控制它的途径。陈志坚在中国福建省一个偏远的山村中长大,在童年时代就表现出了对大自然的天生好奇心,并受到父母的鼓励从事科学研究。他后来移民美国并在纽约州立大学布法罗分校获得博士学位。他认为科学没有国界,疾病是我们共同的敌人。 “生命科学突破奖的获奖者向我们展示了他们的杰出工作,”评委会主席柯里·巴格曼(Cori Bargmann)说。 “他们用创造、革新、坚持和技艺,给世界带来了以往难以想象的进步。” 基础物理学奖 查尔斯·凯恩(Charles Kane)和尤金·米尔(Eugene Mele),均来自宾夕法尼亚大学。 获奖理由:提出了物理学中关于拓扑学和对称性的新观点,并预测出一类表面导电、内部绝缘的新材料。 在本·富兰克林之后,我们一直根据物质能否导电,将其划分为导体和绝缘体。现在,凯恩和米尔的研究颠覆了这一观念。他们预测了一类新的物质——拓扑绝缘体(topological insulator)。这类物质内部是绝缘体,而表面却是良好的导体。拓扑绝缘体的发现对量子计算领域的“军备竞赛”有着重要意义,在此基础上,有可能研制出计算能源效率极高的新一代电子设备。拓扑绝缘体展现出与基本物理粒子(如电子、光子)类似的激发态,而且在实验室中的操控性也优于后者。因此,拓扑绝缘体为我们更深入地理解物质与能量的基本性质打开了一扇新窗口。这一联系也为我们提供了全新的概念框架,帮助我们控制不同物质状态中电荷、光甚至是机械波的流动。 此外,预期之外的应用同样值得期待。正如1947年晶体管刚刚诞生时,没有人能预料到,它引领了几十年后的信息技术革命,使得用小小的芯片存储太字节的数据成为现实。 “凯恩和米尔为量子物理中的拓扑学提出了新思路,”评委会主席爱德华·威滕说,“当故事展现在人们面前时,我们才意识到它有多么优美。” 数学奖 文森特·拉福格(Vincent Lafforgue),法国国家科学研究院,格勒诺布尔大学。 获奖理由:他在数学几个领域内的开创性工作,特别是函数域中对朗兰兹纲领的贡献。 一直以来,法国都盛产伟大的数学家。从笛卡尔、费马、帕斯卡到庞家莱,不一而足。到了近代,韦伊、塞尔、格罗滕迪克的工作为代数几何奠定了新基础,并从中诞生了算数几何。拉福格是算数几何领域的领袖,是密码学和信息安全技术新发现的核心人物。拉福格的学术研究在位于格勒诺布尔的法国国家科学研究院(CNRS)开展,这里是欧洲最大的基础科学研究机构。作为CNRS的终身教职拥有者,他能够自由地探索那些看似不可能的问题。出于对生态危机的深深担忧,现在拉福格的研究重点是将算子几何与量子力学结合,以及设计清洁能源的新材料。 “文森特·拉福格在函数域中发现了一个优美而直接的证明,”评委会主席理查德·泰勒说,“看到他的解释后,你会问自己,为什么这么久以来,所有人都与它擦肩而过。最终,你可以看到朗兰兹对应为什么必须存在,它不再只是复杂计算的动机不明的结论。” 科学突破特别奖——基础物理学奖 乔斯琳·贝尔·伯内尔(Jocelyn Bell Burnell),来自邓迪大学、牛津大学。 获奖理由:她对发现脉冲星做出了基础贡献,一生都是科学界鼓舞人心的领袖。 此外,还有6位在物理学和数学领域处于事业早期阶段的杰出青年科学家获得了总计60万美元的“新视野”奖,其中包括中国数学家许晨阳。 物理新视野奖 布赖恩·梅茨赫尔(Brian Metzger)-哥伦比亚大学。 获奖理由:他对中子星合并的电磁信号做出了开创性预测,领导了新兴的多信使天文学领域的发展。 拉娜·阿迪卡里(Rana Adhikari)-加州理工学院;莉萨·巴尔索蒂(Lisa Barsotti)-麻省理工学院;马修·埃文斯(Matthew Evans)-麻省理工学院。 获奖理由:为研究当前和未来的地面引力波探测器做出贡献。 丹尼尔·哈洛(Daniel Harlow)-麻省理工学院;丹尼尔·L·贾弗里斯(Daniel L. Jafferis)-哈佛大学;阿龙·沃尔(Aron Wall)-斯坦佛大学。 获奖理由:对于量子信息、量子场论和引力的基本理论做出贡献。 数学新视野奖 许晨阳 -麻省理工学院、北京国际数学研究中心。 获奖理由:为最小模型程序(minimal model program)和代数簇的模( moduli of algebraic varieties)的应用的研究进展做出主要贡献。 卡里姆·阿迪普拉斯托(Karim Adiprasito)-耶路撒冷希伯来大学;琼·于(June Huh)-高等研究院。 获奖理由:他们与埃里克·卡茨(Eric Katz)合作发展了组合霍奇理论(combinatorial Hodge theory),罗塔猜测(conjecture of Rota)的对数凹因此得以解出。 凯萨·马托玛奇(Kaisa Matomäki)-图尔库大学;马克瑟姆·拉齐维尔(Maksym Radziwill)-加州理工学院。 获奖理由:他们在理解积性函数值的局部相关性上做出了基本突破。 关于科学突破奖 科学突破奖用以表彰全世界最杰出的科学家,这是科学突破奖颁发的第七个年头。科学突破奖分为生命科学奖(每年最多四个奖项)、基础物理奖(每年一个奖项)以及数学奖(每年一个奖项),每个奖项的奖金为三百万美元。此外,每年还会有不超过三个物理新视野奖以及不超过三个数学新视野奖,用以表彰年轻的科研工作者。获奖者将参加全程直播的颁奖典礼用以表彰他们的杰出成就同时启发下一代科学家。做为典礼的一部分,获奖者也会参加主办方组织的讲座以及论坛。 科学突破奖的奖金由谷歌公司创始人之一谢尔盖·布林、Facebook创始人马克·扎克伯格及其妻子,腾讯创始人马化腾, 互联网投资公司DST GLobal创始人尤里·米尔纳及茱莉亚·米尔纳,23andMe创始人安妮·沃希斯基共同赞助。其评审委员会由之前在各个领域的获奖者组成。 2019年突破奖和新视野奖的获奖人将在第七届突破奖年度颁奖典礼上被授予奖项。突破奖颁奖典礼被誉为“科学界的奥斯卡”,今年将由著名演员、制片人和慈善家皮尔斯布·鲁斯南主持。颁奖典礼将于11月4日,在加利福利亚山景城的NASA埃姆斯研究中心举行, 国家地理频道将进行直播。 突破奖被誉为全世界最慷慨的科学奖,单奖为三百万美金。 该奖项已举办第七个年头,旨在表彰生命科学,基础物理和数学方面的成就,这些学科提出最终极的问题,并寻求最深刻的答案。