《轻质高强中空微球球壳调控研究获进展》

  • 来源专题:智能制造
  • 编译者: icad
  • 发布时间:2025-07-04
  • 兼具电、磁、热功能性的先进材料在电磁波控制和节能环保领域发挥着重要作用。然而,面对装备轻量化和高性能化趋势,如何让这类材料兼具不同功能特性,且实现高机械强度和低密度一直是相关领域的重大挑战。此前,有研究发现基于球壳分区设计的中空微球是协同实现轻量化、高强度及多重功能性的有效途径。

    围绕这一思路,中国科学院理化技术研究所研究员安振国和张敬杰团队开展了系列工作。近期,该团队聚焦于FeCo-玻璃双壳空心微球,通过合金化诱导特殊分布控制策略,实现微波吸收与热性能的协同优化。研究人员以硅酸盐玻璃作为支撑壳,金属作为功能壳,利用界面差异使功能单元在玻璃壳层表面的分布状态得到控制。研究发现,合金化如同“调控钥匙”,可显著影响氧化物前驱体的还原温度、Tammann温度以及过渡壳层的形成,进而有效调节金属结构单元迁移和聚集行为,使构建电磁和热网络简单可控。

    相关研究成果以Collaborative Optimization of Microwave Absorption and Thermal Properties of FeCo-Glass Dual Shell Hollow Spheres Enabled by Alloying-Induced Special Distribution Control为题,发表在《先进功能材料》(Advanced Functional Materials)上。研究工作得到国家自然科学基金委员会、科学技术部等的支持。


  • 原文来源:https://www.cas.cn/syky/202507/t20250703_5075308.shtml
相关报告
  • 《葡萄白藜芦醇合成调控机制研究获进展》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-10-31
    •   白藜芦醇是具有芪类结构的多酚类化合物,能够提高植物抵御生物及非生物胁迫的能力,对人体也具有保健作用。葡萄是少数能够合成白藜芦醇的植物之一,也是获取天然白藜芦醇的重要来源。然而,在多数葡萄品种中白藜芦醇含量较低,难以满足市场需求。白藜芦醇的合成除了与葡萄本身的遗传背景有关外,也受到外界环境因素的影响。芪合酶STS是白藜芦醇合成的关键酶,但关于STS基因表达的精细调控机制特别是对环境的响应机制知之甚少。   中国科学院植物研究所葡萄与葡萄酒科学研发团队通过酵母筛库首次鉴定到对白藜芦醇合成具有负调控作用的R2R3-MYB转录因子MYB30。MYB30与已报道的正调控因子MYB14可以竞争性地结合STS15/21启动子。当葡萄受到紫外光胁迫后,MYB30与MYB14的表达分别下调与上调,这使STS15/21启动子上积累了大量的正调控因子,且STS15/21的表达上调,促进白藜芦醇合成。而当白藜芦醇积累到一定量时,受白藜芦醇诱导的WRKY8转录因子被激活,它可以上调MYB30和下调MYB14的表达水平,其N端还能够与MYB30和MYB14的DNA结合域互作,导致STS15/21表达下调,白藜芦醇合成减少。MYB14-WRKY8-MYB30组成的激活-抑制分子模块揭示了葡萄体内白藜芦醇合成存在自我平衡的机制。同时,这一模块在一定程度上阐释了不同葡萄品种白藜芦醇含量差异的可能机制。该研究为运用基因工程等手段生产白藜芦醇以及培育高含量白藜芦醇葡萄品种奠定了一定的理论基础。   10月18日,相关研究成果在线发表在The Plant Cell上。美国肯塔基州立大学/中国科学院华南植物园的科研人员参与研究。研究工作得到国家重点研发计划、中国科学院战略性先导科技专项和国家自然科学基金的支持。
  • 《微生物生理代谢研究组在微生物调控元件资源应用中取得进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-04-06
    • 微生物无处不在,为了适应环境,微生物进化出了感知各种环境因子的遗传元件。其中,別构转录因子(allosteric transcription factor,aTF)集小分子效应物结合结构域与DNA结合结构域于一身,能够通过结合效应物触发别构效应进而精准地调控靶基因的转录,已经在合成生物学遗传电路开发中得到广泛应用。微生物生理代谢研究组基于多年来对原核生物aTF的认识,利用aTF特有的识别小分子的潜力,首次将其在体外作为全新的识别元件开发小分子检测方法,相关文章已于2017年发表于Chem Commun1并被遴选为back-cover。 近日,为了更好的利用aTF资源开发更便捷、廉价的小分子检测方法,微生物生理代谢研究组首次将aTF识别的小分子信号与等温链替换扩增反应(strand displacement amplification, SDA)实现偶联。从而将在核酸检测领域中广泛使用的SDA扩增方法拓展到小分子检测领域。该策略原理如图:使用Klenow聚合酶(Klenow fragment,KF)与aTF竞争结合引物末端,当不存在靶标小分子时,aTF的结合在空间上位阻了KF介导的SDA;当存在靶标小分子时,小分子使aTF从引物末端解离,从而KF得以启动多轮SDA反应,将小分子信号转换为扩增的G-四链体DNA信号。G-四链体既可以与荧光染料ThT结合,输出荧光信号;也可以与Heme形成DNAzyme,在H2O2介导下氧化ABTS2-,输出可视化颜色变化信号。利用以上策略,微生物生理代谢研究组成功实现了环境污染物对羟基苯甲酸和临床标志物尿酸的检测方法开发。相关文章于近日再次发表在Chem Commun2,并再次被遴选为back-cover。同时也申请了相关专利。