《CRISPR/Cas9介导的基因编辑技术敲除目标染色体》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2017-12-06
  • 2017年11月25日,《基因组生物学》发表了题为《CRISPR/Cas9介导的基因编辑技术敲除目标染色体》的研究论文,该研究由北京大学胡家志实验室和中国科学院神经科学研究所、脑科学与智能技术卓越创新中心杨辉研究组合作完成。该研究介绍了CRISPR/Cas9技术的新型应用,即在细胞、胚胎或体内组织中,针对目标染色体进行多个DNA剪切,可以选择性消除单条染色体。CRISPR/Cas9介导的目标染色体消除为动物模型的建立以及非整倍体疾病的治疗提供了新的方法。

    II型细菌的CRISPR/Cas9系统由Cas9 核酸酶和单链引导RNA(sgRNA)组成,已经被改造成一个高效的基因编辑工具,能显著地提高编辑基因组的能力。sgRNA引导Cas9到达特定的基因组区域,剪切形成双链DNA缺口,该缺口可以通过两种方法修复——非同源染色体末端连接修复或同源重组修复。CRISPR/Cas9基因编辑技术已经应用于生产精确基因突变、重组和染色体片段敲除的细胞或动物。而研究者提出CRISPR/Cas9基因编辑技术是否可以用于整条染色体的消除,进而对建立染色体缺失的动物模型以及非整倍体疾病的治疗提供新的途径。

    为了验证这个想法,研究人员首先设计了脱靶活性可控的sgRNA位点,并应用CRISPR/Cas9介导的针对Y染色体的多位点DNA切割有效地将小鼠胚胎干细胞的Y染色消除。这种多位点剪切可通过单个sgRNA靶向结合多个特异的染色体位点,或者通过14个sgRNA分别结合各自的特异位点来达到。此外,他们还发现小鼠X染色体,人的7号和14号染色体都可以通过这种方法消除。更为重要的是,唐氏综合症病人的iPS细胞中的21号染色体也可以通过这种方法特异性消除。因此,该研究第一次证明性染色体和常染色体可以通过基因编辑特异性消除。

    该研究题目为“CRISPR/Cas9介导的基因编辑技术敲除目标染色体”于2017年11月25日在《基因组生物学》杂志上发表。中国科学院神经科学研究所的左二伟、霍小娜、姚璇、胡新德、孙怡迪和北京大学的尹健行为具有同等贡献的共同第一作者。该研究获得国家自然科学基金会(资助号31522037和31771485)与中国青年相关人才计划(胡家志、杨辉)及其它部分基金的支持。

  • 原文来源:https://link.springer.com/article/10.1186%2Fs13059-017-1354-4,
相关报告
  • 《Cell | 临床crispr - cas9工程T细胞中染色体丢失的缓解》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-10-06
    • 2023年10月3日,加州大学伯克利分校Jennifer A. Doudna(2020年获得诺贝尔化学奖)及Chun Jimmie Ye共同通讯在Cell 在线发表题为Mitigation of chromosome loss in clinical CRISPR-Cas9-engineered T cells的研究论文,为了探索Cas9诱导的染色体丢失是否是一种普遍现象并评价其临床意义,该研究对人原代T细胞进行了系统分析。 排列和汇总的CRISPR筛选显示,染色体丢失在整个基因组中普遍存在,并导致部分和全部目标染色体的丢失,包括在临床前嵌合抗原受体T细胞中。染色体丢失的T细胞在培养中可以持续数周,这意味着可能会干扰临床应用。在Cas9工程T细胞(NCT03399448)的首次人体临床试验中采用了一种改良的细胞制造工艺,减少了染色体丢失,同时在很大程度上保留了基因组编辑的功效。在该方案中观察到p53的表达与染色体丢失的保护相关,这表明T细胞工程的机制和策略在临床上减轻了这种遗传毒性。 本文内容转载自“ iNature”微信公众号。 原文链接: https://mp.weixin.qq.com/s/jowJeaGz1VSbAX2ohRYmeQ
  • 《Nature子刊:抗CRISPR蛋白介导的CRISPR-Cas9系统可提高基因编辑效率,同时降低脱靶效应》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-12-10
    • CRISPR-Cas9基因编辑可能会引起不想要的遗传变化。在一项新的研究中,来自日本广岛大学和东京医科齿科大学的研究人员开发出一种很有前途的修复方法,即关闭CRISPR-Cas9基因编辑,直到它达到关键的细胞周期阶段,在这个阶段,更精确的修复可能会发生。根据这些研究结果,他们成功地展示了更精确的基因编辑,并抑制了称为脱靶效应的非预期基因缺失、插入或突变。相关研究结果近期发表在Communications Biology期刊上,论文标题为“A cell cycle-dependent CRISPR-Cas9 activation system based on an anti-CRISPR protein shows improved genome editing accuracy”。 虽然之前开发的方法报告了较少的与CRISPR技术相关的脱靶效应,但是这些研究人员表示,这些方法往往表现出较低的编辑效率。 论文通讯作者、广岛大学生物医学与健康科学研究生院教授Wataru Nomura说,“我们的目标是开发出避免脱靶效应的方法,脱靶效应是基因组编辑领域最具挑战性的问题之一。我们的方法是一箭双雕。我们可以同时提高基因组编辑的精确性和抑制脱靶效应。” 对基因编辑进行更多的控制 CRISPR-Cas9作为一种更简单、更便宜的工具,开创了基因编辑的新领域。它的作用就像剪刀一样,可以切割你想要改变的遗传物质。然而,这个过程也会产生脱靶效应,从而限制了它在治疗领域的应用。 这种最新开发的消除脱靶效应的方法是通过使用抗CRISPR蛋白AcrIIA4发挥作用的,AcrIIA4的作用就像一种“关闭开关”,可以阻止酿脓链球菌(Streptococcus pyogenes)Cas9(SpyCas9)的基因组编辑活性。这些研究人员将AcrIIA4与人类Cdt1---一个有助于确保每次细胞分裂只发生一次DNA复制的基因---的N末端区域融合在一起,旨在让基因编辑失活,直到细胞周期S和G2期,即同源介导修复(HDR)占主导地位的两个细胞周期阶段。 HDR和非同源末端连接(NHEJ)是有机体使用的两种DNA修复过程。然而,在这两种方法中,HDR是首选方法,这是因为这种修复途径依赖于每个细胞中存在两个染色体拷贝。HDR使用重复的染色体作为修复的模板,使得基因编辑更加精确,而NHEJ倾向于连接DNA的断裂末端。HDR发生在细胞周期的S期和G2期,而NHEJ则在细胞周期的所有阶段都会发生,尤其是在G1期--细胞周期间期的第一阶段,细胞在此阶段生长,为DNA复制做准备。 这些研究人员发现,ArIIA4-Cdt1的融合量取决于细胞周期。它在G1期增加,这阻止了基因编辑的发生,因此,阻止通过NHEJ进行修复。与此同时,它在随后的S、G2和M期期间减少。 这些研究人员说道,“与单独使用SpyCas9相比,使用AcrIIA4-Cdt1进行HDR修复的效率大约提高了4.0倍。在靶位点或脱靶位点1(HCN1基因)的突变比降低了86.5%。此外,通过使用AcrIIA4-Cdt1,脱靶位点2(MFAP1基因)的突变比从8.5%降低到0.6%。SpyCas9和AcrIIA4-Cdt1的共同表达不仅增加了HDR的频率,而且抑制了脱靶效应。因此,SpyCas9和AcrIIA4-Cdt1的组合使用是一种细胞周期依赖性的Cas9激活系统,可实现准确高效的基因组编辑。” Nomura表示,他们希望进一步提高该系统的精确性,使其能够安全地应用于治疗领域。他说,“我们设想将我们的系统应用于其他的CRISPR/抗CRISPR蛋白组合,以及其他基于CRISPR的基因编辑,如碱基编辑和靶向转录介导因子。我们的最终目标是开发一种可以安全用于医学治疗领域的基因组编辑系统。”