《中国又一家芯片企业推出服务器芯片,挑战Intel的垄断地位》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-04-22
  • 近日国产芯片领先企业之一的阿里巴巴宣布正式商用服务器芯片倚天710,其由台积电以5nm工艺代工生产,ARM最新的V9架构,代表着ARM架构的最强性能,这是继华为之后第二家国产芯片企业推出的ARM架构服务器芯片。

    一、阿里巴巴继华为之后推出服务器芯片

    据了解倚天710为一款ARM V9架构的服务器芯片,获益于台积电最先进的5nm工艺,单芯片拥有高达600亿晶体管,内含128核CPU,主频最高达到3.2GHz,能够同时兼顾性能和功耗。

    阿里巴巴方面强调,在SPECInt2017基础测试平台上,该芯片跑分达到440分,超出业界标杆20%,能效比优于业界标杆50%,能够有效帮助数据中心节能减排,数据对比中不太清楚它的比对对象。

    笔者猜测对比对象似乎不是Intel的X86架构服务器芯片,因为目前除苹果开发出的M系芯片在性能方面可以比拼Intel之外,其他ARM阵营的芯片企业都未能开发出性能媲美Intel的芯片,因此怀疑它所强调的业界标杆可能是华为的鲲鹏920,鲲鹏920采用7nm工艺,在性能、功耗方面确实应该比一天710弱不少。

    阿里巴巴的平头哥此前开发的芯片都是基于RISC-V架构,它基于RISC-V架构开发的玄铁系列芯片具有低功耗优势,在国内已获得较大的认可,据悉出货量已达到数十亿颗,如今它推出服务器芯片采用ARM架构,可能是ARM架构的生态更完善,更有望在服务器芯片市场取得成功。

    华为推出的鲲鹏服务器芯片也是ARM架构,这两年从中国电信和中国移动手里获得了不少的订单,显示出国内服务器市场开始认可ARM架构服务器芯片,阿里巴巴在此时推出性能更强的ARM架构服务器芯片有很大希望取得成功。

    二、ARM架构有望挑战Intel

    ARM架构用于服务器芯片市场,此前已有诸多芯片企业尝试,不过大多成为先烈,最早的Calxeda在2013年计划推出ARM架构服务器芯片,但当时的ARM为32位,在性能方面实在太落后,因此Calxeda出师未捷身先死。

    后来ARM推出了64位架构,在性能方面大幅提升,高通在2017年也宣布推出ARM架构服务器芯片,然而不到一年时间同样迅速宣布停止该项业务,原因之一同样在于当时的64位ARM架构服务器芯片性能相比Intel还是差太远,如今高通推出的骁龙8CX Gen3在性能方面都远远落后于苹果的A12X处理器。

    不过到了2020年苹果推出的M1芯片在性能方面与Intel的i7相当,近期推出的M1 ultra在性能方面更是居于PC处理器市场第一位,这让业界看到了ARM架构处理器击败Intel的希望,尤其难得的是M1 ultra依然具有低功耗的特性,M1 ultra在集成GPU的情况下功耗只有Intel的i9的一半。

    低功耗恰恰对于数据中心来说非常重要,业界人士指出能耗占数据中心的运营成本近半,而其中的能耗又有七成并非属于数据运算,即是这七成的能耗消耗在X86服务器芯片的发热上以及为此搭建的空调系统上,为了降低能耗成本,部分互联网企业选择在冰天雪地的地区建立数据中心以降低能耗,可见互联网企业为了数据中心的运营成本也是费尽心思。

    至于当下ARM架构服务器芯片在性能方面与Intel还有差距的问题,可以通过集成更多核心的数量来解决,M1 ULTRA已证明了这个可行性,毕竟数据中心属于巨量并行计算,通过更多核心同时运算可以缩短性能的差距,另外代工厂商台积电的工艺制程领先于Intel也成为ARM架构服务器芯片大幅缩短性能以及降低功耗的重要助力。

    三、中国芯片企业成为挑战Intel的急先锋

    正如上述,华为成为国内芯片企业中第一家推出ARM架构服务器芯片的企业,同时它的鲲鹏920芯片由于获得服务器客户的认可,华为也被认为是第一家实现商用ARM架构服务器芯片的企业。

    有了华为的成功案例,阿里巴巴推出的ARM架构服务器芯片可望延续这种成功,再加上它的性能更强、功耗更低,成功的希望也就更大。加上国内已坚定不移地推进信息安全战略,以自研服务器芯片替代Intel正在推进之中,中国芯片也就成为挑战Intel的急先锋。

    中国芯片突入服务器芯片市场对于Intel是巨大的打击,因为Intel如今在PC市场已被AMD再度击败,AMD在桌面PC处理器市场已取得领先优势,服务器芯片已被Intel视为最核心的业务,这也是Intel在新兴科技领域物联网、自动驾驶等的基石,如果中国芯片彻底在服务器芯片市场站稳脚跟,那么Intel就将全面崩盘。

相关报告
  • 《AMD前芯片研发总监创业两年多 研发了一款超越Intel/NVIDIA的AI视觉芯片》

    • 来源专题:集成电路
    • 编译者:shenxiang
    • 发布时间:2018-10-24
    • 新一轮的AI热潮让一批创业者努力为自己贴上AI标签以便搭上这一波热潮的红利,当然也有一批创业者在AI热潮到来之前就早有准备。AI芯片就是许多早有准备的创业者看好的创业方向,他们想要为AI语音或视觉提供更好的芯片,从目前的情况看,AI视觉芯片领域的竞争相对激烈。值得注意的是,由AMD前芯片研发总监带领的团队用时两年多研发了一款声称超越Intel Movidius MyriadX和Nvidia Tegra X2的AI视觉芯片,事实果真如此? 世界第一的AI视觉芯片来自初创公司 伴随AI的热潮,全球范围内无论是传统芯片巨头、科技企业还是初创公司都对AI芯片有非常高的热情。Intel在2016年收购了硅谷初创视觉处理公司Movidius增强了其在视觉芯片领域的实力,Nvidia也有图像性能强大的Tegra移动处理器。国内,地平线机器人、NextVPU、耐能、云天励飞、寒武纪科技等都是AI视觉芯片创业公司的代表。 越来越多公司的加入也让AI视觉处理器市场的竞争变得越来越激烈,NextVPU(肇观电子)CEO冯歆鹏表示:“AI视觉处理器是一个正在兴起的市场,无论是对巨头还是创业企业都非常重要。我们判断视觉处理器的市场规模未来一定会超过CPU市场。” 他同时表示:“目前的时间点比较有意思,市场的需求已经起来,但芯片处理AI视觉需求的时候速度慢且开发痛苦,价格也很昂贵。如今这个市场还是比较蓝海的情况,英特尔和英伟达这样的芯片巨头在往前走,但是他们的进展相对慢一些,因为新兴的市场规模还比较小,大公司往往是做大市场服务大客户,新兴市场难以撑起大公司的整个项目。从历史的经验看,这种科技变革的节点小公司更有优势。在AI视觉处理器领域,可以说目前我们微微领先。” 冯歆鹏口中微微领先的AI视觉芯片就是被称为世界第一的AI视觉处理器NextVPU N171,这个第一如何理解?冯歆鹏表示,在端侧,我们的AI视觉处理器的几何引擎每秒能计算2.48亿个3D点,这个结果把目前世界领先的的水平推进了一大步。另外,N171的CNN引擎跑深度神经网络例如ResNet的结果也比Nvidia Tegra X2高好几倍。每秒3D点云的性能也比Intel Movidius Myriad2、Nvidia Tegra X2高几倍,还支持其它AI视觉处理器不支持的像素级理解和语义分割。 这家推出被称为世界第一AI视觉处理器的公司是创立于2016年5月的NextVPU,不过NextVPU创立之初首先推出的是辅助盲人感知世界和出行的智能眼镜,原因从冯歆鹏创业的历程就能找到。冯歆鹏在创业前担任AMD的研发总监,与创业搭档周骥博士在大概2012年的时候就开始关注计算机视觉的方向,到了2016年他们觉得很多机会都已经出现,不能再继续等下去,最后两人就在2016年创立了NextVPU(Next Vision Processing Unit, 未来的视觉处理器),中文名为肇观(有开启视觉的含义),冯歆鹏担任CEO,周骥担任CTO。虽然从创业之初就准备做芯片,但他们觉得2016年整个行业还没起来,单一的环节做得好没什么用,因此不得不先做一个产品。当然,从他们创业的第一天开始就在为芯片做准备,也就后来N171里的核心自研IP。 为何能开发出超越芯片巨头的AI芯片? 从数据上看,NextVPU N171可以被称为世界第一的AI视觉芯片,不过更让人关注的是初创公司为何能打造出超越芯片巨头的终端AI视觉芯片?这需要从NextVPU N171芯片的定位到功能去理解,创业之前冯歆鹏就已经明确了要做一款AI视觉芯片,但AI芯片可以分为云端和终端芯片,不同的选择将面对不同的市场竞争。冯歆鹏表示,云端和终端都有很多机会,从英特尔的收入分布看终端和服务器芯片的收入比约为5:1,其中服务器芯片出货量少、单价高利润率也比较高,但是这一市场竞争非常激烈,几乎是巨头垄断,更适合较大的企业。终端芯片无论是市场总量还是芯片需求量都远大于服务器市场,并且终端市场更具多样性,用户的需求也有一定的差别,小公司进入和发展都比较有利。 选择了终端市场之后,接下来需要定义产品功能。冯歆鹏指出,计算机视觉面临几何和理解两大挑战,当然,无论是几何还是理解都有大量的需求,比如客户想通过3D环境扫描做一个模型构建地图,或者生产线上不同的零件区分,这就需要VSLAM、多目、结构光、TOF等技术,也需要CNN识别,检测和分割等技术。看到这些需求并且了解到如今的芯片不能满足需求之后,我们芯片的功能大概就确定了。 因此,NextVPU N171具备的一大特色就是集成了三个自主IP:几何引擎、深度神经网络引擎(CNN)、图像成像引擎(ISP)。几何引擎用于同时处理传感器获得的数据、坐标空间信息、时间等多输入的信息,也就是对三维点组成的点云做各种计算,这是所有VSLAM三维重建的基础,机器人、汽车、AR和VR领域等对此都有急迫的需求。据悉,N171几何引擎每秒能处理2.48亿个3D点,处于业界领先的水平。 深度神经网络引擎支持图像的检测识别、分割以及各种主流的CNN算法。模型从简单到复杂,逻辑从几层到几百层都支持。冯歆鹏强调,深度神经网络引擎我们花了很长时间去做,并且跑越复杂的模型我们的深度神经网络引擎的利用率越高,越流行的网络模型,利用率也越高,几乎可以达到理论极限。 视觉成像引擎则是对图像进行处理,为了能够让机器看懂世界,视觉成像引擎做了非常多特殊的处理的调教,动态范围可以做到150dB,这是基于机器视觉的需求所决定。 除了三大自主IP,N171还有一大特色就是可独立运行操作系统,这个功能是通过N171中的多核CPU来实现。对于这个功能,冯歆鹏表示许多用户习惯于用像Linux这样的操作系统做文件的存储和调取,然后做日志,而非使用特殊的轻量级内核。要实现这个功能,有两种方式,一种是分布式的做法,在常用应用处理器AP芯片的基础上增加一个AI协处理器,第二种方式是异构融合,也就是将两个芯片做集成。 “我们接触到的所有客户都倾向于第二种方式,所以我们集成了多核CPU能够运行操作系统,让我们的芯片既能满足传统需求,也有很好地AI性能。另外,集成度越高,芯片内部的数据传输及交换的成本也能越低。”冯歆鹏补充表示。 由此不难看出,发现市场的痛点和需求之后,根据客户的需求一步步明确产品的形态和功能打造满足市场需求的产品,通过自研的IP,以ASIC芯片的形式实现,N171最终获得比传统芯片巨头性能更强的芯片自然也就可以理解。不过,对市场需求的正确判断以及好的产品理念还不足以让一款芯片成功流片,背后的团队也非常关键。 冯歆鹏和周骥都来自AMD,我们知道AMD是提供CPU,也能提供GPU的高性能计算芯片公司,而AI需要的就是高性能芯片,因此从Intel、Nvidia、AMD这三家高性能计算芯片公司出来的团队在做AI芯片的时候在经验上更具优势。冯歆鹏参与过50多款CPU和GPU的设计,对于高性能计算芯片里的流水线设计、数据的分布式存储处理等都非常有经验。除了基于已有的经验积累用两年多的时间先做IP然后做SoC,N171在其他方面也有巨大的投入。 能否成功落地? 在设计、功能都能够满足市场需求之后,芯片的实际性能成为考验一款芯片能否成功落地的关键。对于N171这样的高性能芯片,无法回避的问题就是高性能带来的高功耗。冯歆鹏表示:“一款芯片的设计只要遵循规则不出错,性能和功耗的实际值和理论值基本会遵循一条曲线。我们产品的性能和功耗水平同样基于客户的需求,根据客户产品设计的电池容量以及他们期望的续航时间,可以推导出芯片功耗的具体水平,只要功耗不大到一定的程度客户都能够接受。当然N171的性能和功耗也可以调教,不同的时钟频率对应不同的功耗,也可以根据客户的需求进行配置。“ N171虽然是高性能芯片,但并没有采用最先进的7nm工艺,而是选择了28nm工艺,这主要是从市场的角度出发,使用成熟的28nm工艺的性能和功耗就能够满足这款芯片目标市场和客户的需求。 而在N171芯片的目标市场之中,汽车市场对于芯片的稳定性、实时性、安全性都有更高的要求。为了进入这一市场,冯歆鹏表示:“我们的芯片首先满足ISO TS16949、AEC-Q100两个车规标准,也正在做ISO26262标准。另外,汽车市场比消费市场和工业市场有一些差异化的需求,比如需要支持零下40度到零上125度的温度,还要求芯片在出现错误之后能够自己恢复和校准。因此我们用更好的封装材料保证其稳定性、测试的流程也更加复杂。基于之前设计波音飞机上使用的CPU的经验,我们对这些都很有经验,只是需要付出更多的时间和成本。” 至于火热的安防市场,他们A轮的领投方是中电海康基金,这个基金背后是中电科技集团和中电海康集团。中电海康集团下属的海康威视是国内安防领域的龙头,他们在积极布局智能摄像头,NextVPU N171里的很多设计和功能也是为安防考虑。 既然基于相同晶圆和裸片的N171能够满足汽车和工业市场的需求,那么消费级市场当然也是NextVPU不会错过的。据悉,N171的第一代芯片已经成功流片,测试的结果也非常好,现在正处于客户导入的阶段,距离正式的上市还有几个月时间。冯歆鹏透露目前的合作客户已经涵盖车载、安防和机器人,希望未来N171还能做第二代、第三代,持续做下去。 在AI的热潮下,许多有经验有实力敏锐的大咖都开始了创业,他们希望能够在新的浪潮里发挥更大的价值,很显然NextVPU的团队就属于这一的创业团队。在技术、产品都能够比肩芯片巨头的情况下,芯片的实际落地更考验创业团队,在这个过程中会遇到很多意想不到的事情。相信我们都愿意看到NextVPU的产品能够不断迭代,为计算机视觉领域带来更好的AI芯片,也能够增强中国芯片的实力。
  • 《3D芯片的挑战》

    • 来源专题:宁夏重点产业科技信息服务
    • 编译者:刘 悦
    • 发布时间:2025-06-30
    • 3D IC技术通过垂直堆叠硅片或晶圆,实现多层有源电子元件的紧密集成,形成单个器件。相比传统二维集成电路,3D IC显著缩短了元件间的物理距离,提高性能、降低功耗并缩小尺寸。其基本架构涉及硅通孔(TSV)等关键技术。 随着对复杂电子系统需求的增加,传统的2D集成方法逐渐显现出局限性,催生了2.5D及3D集成的发展。全球3D IC市场在人工智能、高性能计算、数据中心等领域的驱动下,正经历快速增长。实施3D IC技术需要全面的设计和验证方法,包括热管理、信号完整性和功率传输的精确仿真与优化。 3D IC技术带来了显著的性能提升和电源效率改进。垂直堆叠芯片减少了互连长度,降低了信号延迟,提高了系统运行频率。同时,较短的互连长度也减少了寄生电容和电阻,降低了功耗,这对电池供电设备和数据中心尤为重要。 在行业应用方面,3D IC技术在人工智能、高性能计算和超大规模基础设施中解决了关键的计算挑战。内存芯片直接堆叠在处理单元上方,大幅缩短内存访问时间,提高系统整体吞吐量。尽管初期投资较高,但3D IC技术的长期经济效益显著,制造流程采用混合节点和技术策略,有助于企业优化成本并保持高性能标准。