《杨培东院士团队最新nature:采用温和的溶液合成技术,在室温或低温下合成高熵卤化物钙钛矿单晶》

  • 来源专题:先进材料
  • 编译者: 李丹
  • 发布时间:2023-11-12
  • 来自材料牛

    【导读】

    高熵材料包括高熵金属,高熵陶瓷和高熵半导体是一种新型的多元合金材料,其由五个或更多元素组成,具有高度混杂的晶体结构,因此具有独特的物理和化学性质。尽管高熵材料是一系列功能材料的绝佳候选材料,但其合成过程的显着缺点是形成单相结晶固溶体所需的极端温度要求(通常高于1000 °C)和复杂的加工技术(如热轧),这限制了它们的应用范围。温度通常与高熵材料架构中其他材料的稳定性不兼容,因此,发现新高熵材料系统的一个关键组成部分应包括使用明显温和的条件设计合成进程。由于卤化物钙钛矿具有柔软、易于重构的晶格和易于低温至中温溶液加工性,因此为这一设计挑战提供了潜在的解决方案。

    【成果掠影】

    2023年8月16日,杨培东院士团队发现了一种新型的高熵卤化物钙钛矿单晶的合成方法,使用温和的溶液合成技术,在室温或低温(80°C)的条件下制备高熵材料。该技术克服了形成单相结晶固溶体所需的极端温度要求,为潜在的光电应用材料提供了新的制造方法和选择。相关的研究成果以“High-entropy halide perovskite single crystals stabilized by mild chemistry”为题发表在nature上。



    【核心创新点】

    作者采用温和的溶液合成技术,成功地在室温或低温下合成了高熵卤化物钙钛矿单。并研究了各种孤立的[MCl6]2-八面体对吸收行为、电子结构、能量转移现象和发射性能的影响,揭示了高熵材料的独特性质。

    【成果启示】

    综上所述,作者介绍了一种新型的高熵卤化物钙钛矿单晶的合成方法,该方法使用温和的溶液合成技术,在室温或低温下制备高熵材料。本文还介绍了这种新型材料的吸收行为、电子结构、能量转移现象和发射性能,以及其在潜在的光电应用中的应用前景。此外,通过使用多波长异常衍射技术,成功地研究了六元SnTeReOsIrPt单晶的结构和吸收行为。通过对高熵材料的研究,为潜在的光电应用提供了新的材料选择。



    文献链接:

    https://www.nature.com/articles/s41586-023-06396-8



  • 原文来源:http://www.cailiaoniu.com/253594.html
相关报告
  • 《钙钛矿溶液老化:科学家找到解决办法》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2020-03-20
    • 钙钛矿太阳能电池在过去十年发展迅速。但是和硅太阳能电池一样,钙钛矿太阳能电池的效率很大程度上取决于钙钛矿层的质量,这与它的结晶度有关。 遗憾的是,用于制造太阳能电池的钙钛矿溶液的老化过程使溶液不稳定,从而导致设备的效率和再现性较差。反应物和制备条件也是造成质量差的原因。 为了解决这些问题,中国科学院青岛生物能源与生物处理技术研究所(QIBEBT)的一个研究小组对钙钛矿溶液的老化过程提出了新的认识,并找到了避免副作用的方法。这项研究发表在3月17日的《化学》杂志上,题为“钙钛矿溶液老化:发生了什么?如何抑制?””。 该论文的通讯作者庞树平教授表示,尽管钙钛矿太阳能电池的研究已经进行了10年,但“对基础溶液化学的深入了解”并没有跟上其效率的迅速提高。 庞教授说:“通常情况下,我们需要高温和长时间才能完全溶解反应物,但一些副反应可能同时发生。”“幸运的是,我们找到了一种抑制它们的方法。” 庞教授说,获得一种高度稳定的钙钛矿溶液对商业化钙钛矿太阳能电池尤其重要,因为它将更容易制造出高稳定性的设备。 齐贝丁大学副教授、论文第一作者王晓表示,当碘化甲铵和碘化甲酰胺共存时,会发生侧缩合反应。它们代表了老化钙钛矿溶液中的主要副反应,尽管溶质和溶剂之间的其他副反应可以在非常高的温度下发生。 青岛科技大学研究生、本论文第一作者之一范颖萍研究了许多终止不良副反应的方法,但最终发现低沸点的硼酸三乙酯稳定剂非常有效。樊还指出,这是一种“清洁”的稳定剂,因为它可以在随后的热处理过程中完全从薄膜上除去。 有了这种新的稳定剂,钙钛矿太阳能电池的再现性有了很大的提高。“现在,在制造设备之前,我们不需要每次都提出新的解决方案,”来自QIBEBT的崔光磊教授说。他指出,这一发现对钙钛矿模块的制造“非常重要”。
  • 《山东大学团队在制备高质量金属卤化物钙钛矿纳米晶取得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-01-26
    • 山东大学前沿交叉科学青岛研究院分子科学与工程研究院韩克利教授团队在制备高质量金属卤化物钙钛矿纳米晶方面取得重要进展,利用锗卤化物作为理想的前驱体设计了一种更有效、毒性更小的制备高光电性能金属卤化物钙钛矿纳米晶体的途径,使所制备的纳米晶的光电质量得到了明显改善。相关研究成果以“Germanium Halides Serving as Ideal Precursors: Designing A More Effective and Less Toxic Route to High Optoelectronic Quality metal Halide Perovskite Nanocrystals”为题发表在国际学术期刊Nano Letters上。山东大学是该论文的第一完成单位,前沿交叉科学青岛研究院2019级硕士研究生王晓晨和2020级博士研究生柏天新为该论文共同第一作者,韩克利教授和刘锋研究员为该论文的共同通讯作者。 金属卤化物钙钛矿纳米晶由于显着的尺寸特性和结构稳定性受到了广泛关注。然而,铅基和非铅钙钛矿纳米晶的三前驱体合成面临着非常相似的挑战:目前选择的卤化物前驱体主要局限于有毒并且高度易燃的有机卤化物,这将大大限制它们的大规模应用。另外,这些有机卤化物制备的大多数纳米晶由于卤素缺陷导致其光致发光性能较差。而很多无机金属卤化物又会同时将金属阳离子引入钙钛矿晶格,从而不可避免地改变目标材料的晶体结构。因此,寻找合适的卤化物前驱体变得越来越重要。 在本工作中,该团队创新性地提出了将全无机锗盐GeX4(X = Cl、Br、I)作为稳定且低危险性的卤化物前驱体。不同于大多数其他无机卤化物前驱体,GeX4化合物不会将Ge元素传递到最终化合物中,而所得纳米晶的发光强度、荧光寿命、光致发光量子产率和相稳定性都得到了明显改善。这可归功于Ge卤化物中卤素离子释放过程的良好调控,这有助于增加所得钙钛矿纳米晶的卤化物组成,从而减少或消除与卤化物空位相关的陷阱态。并且理论计算表明,锗卤化物在介电环境和热力学中都提供了有利的条件,这有助于形成尺寸受限的缺陷抑制的纳米粒子。该研究为制备高质量的钙钛矿纳米材料并调整其光电特性提供了一条光明道路。