《青岛能源所全海深固态锂电池完成万米海试示范应用》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: zhangmin
  • 发布时间:2017-03-31
  • 自主深海探测装备研制已经成为国家重大战略需求,高能量密度深海动力电源技术是限制深潜器长续航能力的瓶颈,目前能够承受 100MPa 压力全海深电源技术只有日本掌握。近年来,我国在深海动力电池领域获得了显著成果。其中,“十五”期间国内发展了充油耐压银锌电池技术,并在深潜器“蛟龙”号载人潜水器上得到应用,潜水深度 7000 米,续航时间为 6 小时。然而银锌电池的能量密度较低(低于 60Wh/kg ),使用寿命较短( 50 次),因此不能满足 11000 米全海深海域长续航能力领域的应用要求。   与银锌电池相比,锂离子电池在能量密度和安全性等方面表现出了明显优势,商品化单体能量密度目前最高达到 180Wh/kg 。但是采用有机电解液的锂离子电池,当发生过度充电或者内部短路等异常时,易挥发易燃的有机电解液可能会导致热失控,在 3000 米海深以下此问题更为凸显,发生爆炸等安全事件的概率增大。而采用固态电解质代替液体电解液,可以使电池能量...

相关报告
  • 《华为 | 公布固态电池专利》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2024-11-08
    • 11月5日,华为在国家知识产权局公开了一项硫化物固态电池的专利,题为《掺杂硫化物材料及其制备方法、锂离子电池》。 该专利旨在解决硫化物固态电池在实际应用中出现的金属锂负极与硫化物电解质间的界面副反应问题,进而提升电池的寿命和稳定性。这一创新技术被业内视为固态电池发展的重要突破,为高效、安全的电池应用提供了新的方向。 创新技术背景:优化界面稳定性 随着新能源市场的快速发展,固态电池因其高能量密度、长循环寿命及安全性,被视为未来电池技术的主流路径。硫化物固态电池在离子电导率、快充性能以及耐高温方面优于氧化物固态电池,但其金属锂负极与硫化物电解质的界面反应却对电池的使用寿命产生不利影响。针对这一技术瓶颈,华为的研发团队提出了一种氮元素掺杂的硫化物材料,显著提升了电解质对金属锂的稳定性。氮元素作为掺杂基团,可与锂结合形成Li?N,从而在一定程度上抑制副反应的发生,延长了电池的循环寿命。 华为新专利的技术细节与优势 晶体结构与材料设计:该专利的掺杂硫化物材料采用立方晶型结构,在晶胞中掺入氮元素,能够与锂(Li)结合形成Li?N,这种设计在阻止材料与金属锂的副反应方面发挥了重要作用。 电池性能提升:掺杂硫化物材料具有较高的离子电导率,并能够显著提升锂离子电池的循环寿命。这种材料可作为硫化物固态电解质使用于锂离子电池中,有助于提高能量密度、延长寿命,并具备更好的安全性和快充性能。 产业快速发展,多方布局固态电池 近期,固态电池产业在全球范围内快速推进。10月24日,“北京亦庄”宣布国内首条全固态锂电池量产线投产,具备年产50安时全固态电池的能力。两天后,江西于都的500MWh全固态电池量产线正式投产并发布产品,这标志着中国固态电池的产业化进程进一步加速。与此同时,太蓝新能源将联合长安汽车于11月7日发布新的固态锂电池技术,展示固态电池在电动汽车中的应用前景。 产业界的龙头企业也纷纷投入固态电池研发。宁德时代已在10Ah级全固态电池上进行试验,计划在2027年实现小批量量产;清陶能源计划2025年实现10万辆级别的固态电池量产。卫蓝新能源则在北京开工建设固态电池项目,预计2027年可以实现电池在整车上的小规模验证。整体来看,业内普遍预期到2025年半固态电池有望量产并应用于新能源汽车,到2030年全固态电池将逐步实现大规模商用。 市场前景广阔,概念股走势强劲 东方证券指出,全固态电池早期将优先应用于消费电子、高端电动车及航空航天市场,到2030年在动力电池和消费电池中的渗透率将分别达到2%和10%。集邦咨询预测,到2027年前固态电池的产量将达到GWh级别,2030年其应用规模将突破10GWh,而电池的单位瓦时价格预计在2035年有望降至0.6-0.7元,为其大规模推广创造经济基础。 华为专利的发布也带动了A股市场中固态电池相关概念股的表现。据统计,固态电池指数自9月以来涨幅超35%。其中,南都电源的涨幅超过180%,璞泰来、德福科技、容百科技等多家企业涨幅也超过50%。此外,蓝海华腾、万向钱潮、新宙邦等公司均在投资者互动平台上回应称已布局硫化物固态电池的研发。珠海冠宇作为消费电池供应商,开发了固态电池正极材料,其电池样品能量密度达400Wh/kg,并具备安全性和长寿命优势,预计未来有望在消费电子中实现大规模量产。 技术推动市场变革 华为的硫化物固态电池专利不仅为固态电池技术提供了新的技术思路,也进一步奠定了其在电池领域的研发实力。随着新能源汽车市场的持续扩张和储能系统需求的快速增长,固态电池的市场前景被普遍看好,技术路线逐步清晰。 未来数年,固态电池将逐步替代现有锂电池技术,推动电动汽车和储能系统的高效、安全发展。华为在此领域的技术突破,尤其在材料和界面稳定性上的创新,将为行业带来更高效的电池解决方案,有望成为未来绿色能源应用的关键驱动力。
  • 《青岛能源所开发出高热稳定性锂盐用于下一代高能锂电池领域》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-05-29
    • 如果说电解液是锂电池的“血液”,那么电解液中的锂盐犹如“血液”中的“血红蛋白”,其重要性不言而喻。传统电解液中大多采用六氟磷酸锂(LiPF6)作为主盐,但LiPF6存在热稳定性差(<100℃),遇水极易分解等缺点,难以满足下一代高能锂电池应用需求。近年来,依托青岛能源所建设的青岛储能产业技术研究院(简称“青岛储能院”)致力于新型高热稳定性高安全锂盐的设计、合成和应用研究,并取得一系列重要进展:自主设计合成了一系列具有高热稳定性(>200℃)高安全的硼系主盐,如酒石酸硼酸锂及其衍生物(Electrochim. Acta 2013, 92, 132-138; Solid State Ionics 2014, 262 747-753; Electrochim. Acta 2014, 141, 167-172; J. Mater. Chem. A 2015, 3, 7773-7779; Coord. Chem. Rev. 2015, 292, 56-73),大阴离子结构的全氟叔丁氧基三氟硼酸锂(LiTFPFB,Chem. Sci. 2018, 9, 3451-3458)等;同时,开展了一些将新型高热稳定性主盐应用于下一代高电压锂电池的研究(Energy Environ. Sci. 2018, 11, 1197-1203;J. Electrochem. Soc. 2019, 166, A2313-A2321);另外,也开展了一些高浓度锂盐电解液的开拓性研究工作(Chem. Commun. 2019, DOI:10.1039/C9CC03246K; J. Power Sources 2019, DOI: https://doi.org/10.1016/j.jpowsour.2019.226942)。https://doi.org/10.1002/anie.201906494).   近日,青岛储能院将自主合成的新锂盐LiTFPFB用于抑制双三氟甲基磺酰亚胺锂(LiTFSI)对正极Al集流体的腐蚀,并通过溶剂和添加剂配方的优化,开发出高热稳定性混合主盐电解液,实现LiNi0.5Mn0.3Co0.2O2/Li (NMC/Li)金属锂电池超宽温区(-40℃-90℃)运行,相关工作以Front Cover Picture文章发表在Small (Small 2019, 15, 1900269)。近年来混合主盐电解液在下一代高能锂电池领域备受关注,正是因为在电解液锂盐研究领域的深厚积淀,青岛储能院应邀撰写关于混合主盐电解液的综述,以”Key Scientific Issues in Formulating Blended Lithium Salts Electrolyte for Lithium Batteries”为题目在线发表在Angewandte Chemie International Edition (DOI:   相关系列研究获得了国家自然科学基金相关人才计划,国家重点研发计划新能源汽车固态电池项目,中国科学院纳米先导专项和深海先导专项,国家自然科学基金重点基金,山东省自然科学基金重大研发项目,青岛市储能行业科学研究智库联合基金,青岛能源所“一三五”项目等的大力资助。(文/图 许高洁 崔光磊)