《微生物所高福院士团队在γ疱疹病毒侵入机制领域取得重要进展》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2020-11-25
  • 卡波氏肉瘤相关疱疹病毒(Kaposi’s sarcoma-associated herpesvirus,KSHV)和爱泼斯坦-巴尔病毒(Epstein-Barr virus,EBV)属于γ疱疹病毒亚科,是与恶性肿瘤密切相关的人类癌症相关病毒。2020年11月24日,高福院士团队在国际权威学术期刊Nature Communications上在线发表了题为“Molecular basis of EphA2 recognition by gHgL from gammaherpesviruses”的研究论文,分别解析了KSHV以及EBV糖蛋白gHgL与其共同受体EphA2的复合物晶体结构,揭示了这两种感染人γ疱疹病毒利用gHgL结合受体EphA2的分子机制,并提供了EphA2可能作为γ疱疹病毒通用受体的证据,暗示了其它γ疱疹病毒有跨种传播的风险。

      KSHV和EBV具有广泛的细胞嗜性,其中KSHV的靶细胞主要是B细胞和内皮细胞,EBV主要感染B细胞和上皮细胞。其细胞嗜性主要取决于病毒囊膜表面的糖蛋白H(gH)和糖蛋白L(gL)。gHgL直接或者间接结合特异性受体后将受体信号传递给融合蛋白gB,启动病毒与细胞的膜融合。Ephrin受体酪氨酸激酶A2(ephrin receptor tyrosine kinase A2, EphA2)可作为EBV入侵上皮细胞的受体,也可作为KSHV入侵内皮细胞的受体。但是gHgL如何识别EphA2,其分子机制尚不清楚。

    通过体外生化实验,研究人员发现EphA2的配体结合结构域(Ligand binding domain, LBD)负责与gHgL结合,且KSHV gHgL与LBD之间的亲和力高于EBV gHgL与LBD的亲和力(17.5 nM vs 4.12 μM)。研究人员进一步分别解析了KSHV及EBV gHgL与EphA2 LBD的复合物晶体结构,发现KSHV和EBV gHgL都是形成长棒状的异源二聚体,gL位于棒状结构末端与gH形成紧密结合;KSHV和EBV gHgL结合LBD的模式也非常相似,主要通过末端的gL与LBD结合。一方面gL的N端loop插入到LBD的疏水通道里,另一方面gL的Lloop2和β2折叠结合LBD的外周区域,形成较为稳定的相互作用。进一步分析发现,KSHV gHgL与LBD存在更大的相互作用面积及更多的相互作用数,是其亲和力高于EBV gHgL的原因。研究人员进一步利用细胞融合实验对关键结合位点进行了验证。

    此外,序列分析发现KSHV和EBV gL上参与结合LBD的氨基酸在γ疱疹病毒中相对保守,具备相似的氨基酸性质,因此推测其它感染哺乳动物的γ疱疹病毒是否也利用EphA2作为受体。研究人员进一步从γ疱疹病毒不同属中挑选了三种有代表性的病毒AIHV-1、EHV-2和MuHV-4进行验证。细胞融合实验证明这三种病毒的gHgL蛋白能结合宿主的EphA2,而且AIHV-1和EHV-2的gHgL也能结合人的EphA2,提示这些病毒具备感染人的潜力。

    该项工作系统地研究了这两种感染人γ疱疹病毒利用gHgL结合受体EphA2的分子机制,为中和抗体及抗病毒抑制剂的研发提供了理论指导,并发现其它γ疱疹病毒也可能利用EphA2作为受体,提示其它γ疱疹病毒具有跨种传播的风险,为科学防控提供了理论依据。

      中国科学院微生物研究所高福院士、严景华研究员和中国科学院北京生命科学研究院宋豪博士为文章的共同通讯作者,中国农业大学和中国科学院微生物研究所联合培养博士生苏朝、微生物所博士生仵丽丽为文章的第一作者。该研究得到国家自然科学基金、中国科学院先导专项、国家科技重大专项及中国科学院“青年创新促进会”人才专项等项目的资助。

  • 原文来源:http://www.im.cas.cn/xwzx2018/kyjz/202011/t20201125_5782389.html;https://www.nature.com/articles/s41467-020-19617-9
相关报告
  • 《微生物所高福院士团队在γ疱疹病毒侵入机制领域取得重要进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-11-25
    • 卡波氏肉瘤相关疱疹病毒(Kaposi’s sarcoma-associated herpesvirus,KSHV)和爱泼斯坦-巴尔病毒(Epstein-Barr virus,EBV)属于γ疱疹病毒亚科,是与恶性肿瘤密切相关的人类癌症相关病毒。2020年11月24日,高福院士团队在国际权威学术期刊Nature Communications上在线发表了题为“Molecular basis of EphA2 recognition by gHgL from gammaherpesviruses”的研究论文,分别解析了KSHV以及EBV糖蛋白gHgL与其共同受体EphA2的复合物晶体结构,揭示了这两种感染人γ疱疹病毒利用gHgL结合受体EphA2的分子机制,并提供了EphA2可能作为γ疱疹病毒通用受体的证据,暗示了其它γ疱疹病毒有跨种传播的风险。   KSHV和EBV具有广泛的细胞嗜性,其中KSHV的靶细胞主要是B细胞和内皮细胞,EBV主要感染B细胞和上皮细胞。其细胞嗜性主要取决于病毒囊膜表面的糖蛋白H(gH)和糖蛋白L(gL)。gHgL直接或者间接结合特异性受体后将受体信号传递给融合蛋白gB,启动病毒与细胞的膜融合。Ephrin受体酪氨酸激酶A2(ephrin receptor tyrosine kinase A2, EphA2)可作为EBV入侵上皮细胞的受体,也可作为KSHV入侵内皮细胞的受体。但是gHgL如何识别EphA2,其分子机制尚不清楚。 通过体外生化实验,研究人员发现EphA2的配体结合结构域(Ligand binding domain, LBD)负责与gHgL结合,且KSHV gHgL与LBD之间的亲和力高于EBV gHgL与LBD的亲和力(17.5 nM vs 4.12 μM)。研究人员进一步分别解析了KSHV及EBV gHgL与EphA2 LBD的复合物晶体结构,发现KSHV和EBV gHgL都是形成长棒状的异源二聚体,gL位于棒状结构末端与gH形成紧密结合;KSHV和EBV gHgL结合LBD的模式也非常相似,主要通过末端的gL与LBD结合。一方面gL的N端loop插入到LBD的疏水通道里,另一方面gL的Lloop2和β2折叠结合LBD的外周区域,形成较为稳定的相互作用。进一步分析发现,KSHV gHgL与LBD存在更大的相互作用面积及更多的相互作用数,是其亲和力高于EBV gHgL的原因。研究人员进一步利用细胞融合实验对关键结合位点进行了验证。 此外,序列分析发现KSHV和EBV gL上参与结合LBD的氨基酸在γ疱疹病毒中相对保守,具备相似的氨基酸性质,因此推测其它感染哺乳动物的γ疱疹病毒是否也利用EphA2作为受体。研究人员进一步从γ疱疹病毒不同属中挑选了三种有代表性的病毒AIHV-1、EHV-2和MuHV-4进行验证。细胞融合实验证明这三种病毒的gHgL蛋白能结合宿主的EphA2,而且AIHV-1和EHV-2的gHgL也能结合人的EphA2,提示这些病毒具备感染人的潜力。 该项工作系统地研究了这两种感染人γ疱疹病毒利用gHgL结合受体EphA2的分子机制,为中和抗体及抗病毒抑制剂的研发提供了理论指导,并发现其它γ疱疹病毒也可能利用EphA2作为受体,提示其它γ疱疹病毒具有跨种传播的风险,为科学防控提供了理论依据。   中国科学院微生物研究所高福院士、严景华研究员和中国科学院北京生命科学研究院宋豪博士为文章的共同通讯作者,中国农业大学和中国科学院微生物研究所联合培养博士生苏朝、微生物所博士生仵丽丽为文章的第一作者。该研究得到国家自然科学基金、中国科学院先导专项、国家科技重大专项及中国科学院“青年创新促进会”人才专项等项目的资助。
  • 《微生物所合作在古菌病毒结构研究中取得新进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-07-30
    • 上世纪七十年代,美国科学家Woese等提出了三域学说,将地球上的生命分为三种形式(或域),即细菌、古菌和真核生物。古菌常见于高温热泉、盐碱湖、厌氧等极端环境。1984年,德国人Zillig等首次从热泉古菌中分离到了病毒,该病毒形态为此前从未见过的纺锤形(60×100nm),宿主是极端嗜酸嗜热古菌─硫化叶菌(Sulfolobus)。这些纺锤形病毒(Sulfolobus spindle-shaped virus,SSV)属于微小纺锤形病毒科,几乎存在于世界各地的所有高温硫泉中,至今已分离得到20多个病毒株(SSV1~22)。纺锤形是古菌病毒的常见形态,在海洋、盐湖、酸性矿山、极地水体等许多自然环境都已发现。除了形状奇特,纺锤形病毒基因组中约3/4的基因功能未知,这些病毒的衣壳形态构建规则、极端环境适应机制、生活史、与宿主之间的相互作用、起源与进化等成为研究热点。 黄力研究团队致力于研究纺锤形病毒和其他古菌病毒,先后发现了包括四株微小纺锤形病毒(SSV19~22)在内的多个新的古菌病毒,并深入探讨了微小纺锤形病毒的感染过程及关键步骤。解析微小纺锤形病毒结构对于理解病毒组装方式、入侵机制和核酸释放等过程非常重要,但是由于此类病毒衣壳通常柔性较大,先前获得的冷冻电镜结构的分辨率都很低,难以看清微小纺锤形病毒的真实面貌。 黄力团队与湖南师范大学刘红荣、程凌鹏团队合作,利用近期分离的SSV19,获得了近原子分辨率的病毒颗粒尾部结构。研究发现,SSV19的主要衣壳蛋白(major capsid protein)VP1构成七股螺旋,左手盘绕,组成整个病毒衣壳,病毒颗粒的尾部由七次对称的喷嘴蛋白(nozzle protein)C131、连接蛋白(adaptor protein)B210和尾刺蛋白(tailspike protein)VP4组成。七次旋转对称的病毒衣壳结构属首次发现。在尾部和衣壳之间发现了脂质分子,解开了此类病毒脂质定位之谜。 他们还发现尾刺蛋白含有与细菌甘露聚糖水解酶活性部位相似的结构域,提示该病毒可能通过识别、甚至水解细胞表面的糖链进入宿主细胞。有意思的是,VP1与一种古菌杆状病毒的主要衣壳蛋白结构高度相似,说明纺锤形和杆状病毒衣壳有着共同的结构基础;此外,SSV19的喷嘴蛋白与疱疹病毒和细菌噬菌体的相应蛋白在结构上相似,提示这些感染古菌、真核生物和细菌的病毒可能具有共同祖先。 本研究的结果有助于揭示微小纺锤形病毒颗粒组装、宿主识别与进入、病毒DNA释放等环节的分子细节,增加对古菌病毒及其演化规律的认识。 上述工作已于2022年7月27日在线发表于《美国科学院院刊》(Proceedings of the National Academy of Sciences of the United States of America,PNAS)。黄力研究员、湖南师范大学刘红荣教授、程凌鹏副教授为该论文的共同通讯作者。湖南师范大学硕士生韩阵、中国科学院微生物研究所博士生袁琬娟为并列第一作者。该研究得到了国家自然科学基金、湖南省自然科学基金创新群体项目等的资助。 论文链接:https://www.pnas.org/doi/full/10.1073/pnas.2119439119