《微生物所高福院士团队在γ疱疹病毒侵入机制领域取得重要进展》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2020-11-25
  • 卡波氏肉瘤相关疱疹病毒(Kaposi’s sarcoma-associated herpesvirus,KSHV)和爱泼斯坦-巴尔病毒(Epstein-Barr virus,EBV)属于γ疱疹病毒亚科,是与恶性肿瘤密切相关的人类癌症相关病毒。2020年11月24日,高福院士团队在国际权威学术期刊Nature Communications上在线发表了题为“Molecular basis of EphA2 recognition by gHgL from gammaherpesviruses”的研究论文,分别解析了KSHV以及EBV糖蛋白gHgL与其共同受体EphA2的复合物晶体结构,揭示了这两种感染人γ疱疹病毒利用gHgL结合受体EphA2的分子机制,并提供了EphA2可能作为γ疱疹病毒通用受体的证据,暗示了其它γ疱疹病毒有跨种传播的风险。

      KSHV和EBV具有广泛的细胞嗜性,其中KSHV的靶细胞主要是B细胞和内皮细胞,EBV主要感染B细胞和上皮细胞。其细胞嗜性主要取决于病毒囊膜表面的糖蛋白H(gH)和糖蛋白L(gL)。gHgL直接或者间接结合特异性受体后将受体信号传递给融合蛋白gB,启动病毒与细胞的膜融合。Ephrin受体酪氨酸激酶A2(ephrin receptor tyrosine kinase A2, EphA2)可作为EBV入侵上皮细胞的受体,也可作为KSHV入侵内皮细胞的受体。但是gHgL如何识别EphA2,其分子机制尚不清楚。

    通过体外生化实验,研究人员发现EphA2的配体结合结构域(Ligand binding domain, LBD)负责与gHgL结合,且KSHV gHgL与LBD之间的亲和力高于EBV gHgL与LBD的亲和力(17.5 nM vs 4.12 μM)。研究人员进一步分别解析了KSHV及EBV gHgL与EphA2 LBD的复合物晶体结构,发现KSHV和EBV gHgL都是形成长棒状的异源二聚体,gL位于棒状结构末端与gH形成紧密结合;KSHV和EBV gHgL结合LBD的模式也非常相似,主要通过末端的gL与LBD结合。一方面gL的N端loop插入到LBD的疏水通道里,另一方面gL的Lloop2和β2折叠结合LBD的外周区域,形成较为稳定的相互作用。进一步分析发现,KSHV gHgL与LBD存在更大的相互作用面积及更多的相互作用数,是其亲和力高于EBV gHgL的原因。研究人员进一步利用细胞融合实验对关键结合位点进行了验证。

    此外,序列分析发现KSHV和EBV gL上参与结合LBD的氨基酸在γ疱疹病毒中相对保守,具备相似的氨基酸性质,因此推测其它感染哺乳动物的γ疱疹病毒是否也利用EphA2作为受体。研究人员进一步从γ疱疹病毒不同属中挑选了三种有代表性的病毒AIHV-1、EHV-2和MuHV-4进行验证。细胞融合实验证明这三种病毒的gHgL蛋白能结合宿主的EphA2,而且AIHV-1和EHV-2的gHgL也能结合人的EphA2,提示这些病毒具备感染人的潜力。

    该项工作系统地研究了这两种感染人γ疱疹病毒利用gHgL结合受体EphA2的分子机制,为中和抗体及抗病毒抑制剂的研发提供了理论指导,并发现其它γ疱疹病毒也可能利用EphA2作为受体,提示其它γ疱疹病毒具有跨种传播的风险,为科学防控提供了理论依据。

      中国科学院微生物研究所高福院士、严景华研究员和中国科学院北京生命科学研究院宋豪博士为文章的共同通讯作者,中国农业大学和中国科学院微生物研究所联合培养博士生苏朝、微生物所博士生仵丽丽为文章的第一作者。该研究得到国家自然科学基金、中国科学院先导专项、国家科技重大专项及中国科学院“青年创新促进会”人才专项等项目的资助。

  • 原文来源:http://www.im.cas.cn/xwzx2018/kyjz/202011/t20201125_5782389.html;https://www.nature.com/articles/s41467-020-19617-9
相关报告
  • 《微生物所高福院士团队在γ疱疹病毒侵入机制领域取得重要进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-11-25
    • 卡波氏肉瘤相关疱疹病毒(Kaposi’s sarcoma-associated herpesvirus,KSHV)和爱泼斯坦-巴尔病毒(Epstein-Barr virus,EBV)属于γ疱疹病毒亚科,是与恶性肿瘤密切相关的人类癌症相关病毒。2020年11月24日,高福院士团队在国际权威学术期刊Nature Communications上在线发表了题为“Molecular basis of EphA2 recognition by gHgL from gammaherpesviruses”的研究论文,分别解析了KSHV以及EBV糖蛋白gHgL与其共同受体EphA2的复合物晶体结构,揭示了这两种感染人γ疱疹病毒利用gHgL结合受体EphA2的分子机制,并提供了EphA2可能作为γ疱疹病毒通用受体的证据,暗示了其它γ疱疹病毒有跨种传播的风险。   KSHV和EBV具有广泛的细胞嗜性,其中KSHV的靶细胞主要是B细胞和内皮细胞,EBV主要感染B细胞和上皮细胞。其细胞嗜性主要取决于病毒囊膜表面的糖蛋白H(gH)和糖蛋白L(gL)。gHgL直接或者间接结合特异性受体后将受体信号传递给融合蛋白gB,启动病毒与细胞的膜融合。Ephrin受体酪氨酸激酶A2(ephrin receptor tyrosine kinase A2, EphA2)可作为EBV入侵上皮细胞的受体,也可作为KSHV入侵内皮细胞的受体。但是gHgL如何识别EphA2,其分子机制尚不清楚。 通过体外生化实验,研究人员发现EphA2的配体结合结构域(Ligand binding domain, LBD)负责与gHgL结合,且KSHV gHgL与LBD之间的亲和力高于EBV gHgL与LBD的亲和力(17.5 nM vs 4.12 μM)。研究人员进一步分别解析了KSHV及EBV gHgL与EphA2 LBD的复合物晶体结构,发现KSHV和EBV gHgL都是形成长棒状的异源二聚体,gL位于棒状结构末端与gH形成紧密结合;KSHV和EBV gHgL结合LBD的模式也非常相似,主要通过末端的gL与LBD结合。一方面gL的N端loop插入到LBD的疏水通道里,另一方面gL的Lloop2和β2折叠结合LBD的外周区域,形成较为稳定的相互作用。进一步分析发现,KSHV gHgL与LBD存在更大的相互作用面积及更多的相互作用数,是其亲和力高于EBV gHgL的原因。研究人员进一步利用细胞融合实验对关键结合位点进行了验证。 此外,序列分析发现KSHV和EBV gL上参与结合LBD的氨基酸在γ疱疹病毒中相对保守,具备相似的氨基酸性质,因此推测其它感染哺乳动物的γ疱疹病毒是否也利用EphA2作为受体。研究人员进一步从γ疱疹病毒不同属中挑选了三种有代表性的病毒AIHV-1、EHV-2和MuHV-4进行验证。细胞融合实验证明这三种病毒的gHgL蛋白能结合宿主的EphA2,而且AIHV-1和EHV-2的gHgL也能结合人的EphA2,提示这些病毒具备感染人的潜力。 该项工作系统地研究了这两种感染人γ疱疹病毒利用gHgL结合受体EphA2的分子机制,为中和抗体及抗病毒抑制剂的研发提供了理论指导,并发现其它γ疱疹病毒也可能利用EphA2作为受体,提示其它γ疱疹病毒具有跨种传播的风险,为科学防控提供了理论依据。   中国科学院微生物研究所高福院士、严景华研究员和中国科学院北京生命科学研究院宋豪博士为文章的共同通讯作者,中国农业大学和中国科学院微生物研究所联合培养博士生苏朝、微生物所博士生仵丽丽为文章的第一作者。该研究得到国家自然科学基金、中国科学院先导专项、国家科技重大专项及中国科学院“青年创新促进会”人才专项等项目的资助。
  • 《天然免疫调控γ疱疹病毒复制的新机制研究取得进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-03-17
    • γ疱疹病毒包括KSHV、EBV等病毒,临床上与卡波西氏肉瘤、原发渗出性淋巴瘤以及鼻咽癌等恶性肿瘤的发生密切相关。γ疱疹病毒生命周期具有两相性即潜伏感染期和裂解复制期。在潜伏感染期,病毒基因组以附加体(episome)形式存在,仅表达少量病毒基因,以逃逸机体免疫监视。当机体处于缺氧、微生物共感染、免疫力低下等病理生理条件时,病毒可以被再激活进入裂解复制期,表达大量病毒基因并组装释放具有感染性的子代病毒。 γ疱疹病毒生命周期的两相性是病毒无法被机体清除、宿主终生携带病毒并致病的根本原因。全面解析γ疱疹病毒生命周期的调控机制,有助于我们找寻防控病毒感染的有效方案,但疱疹病毒生命周期转换的调控机制颇为复杂,较多问题尚待解决。之前,领域内研究聚焦于病毒蛋白如RTA、LANA以及宿主表观遗传修饰因子等因素在KSHV生命周期调控中的作用,而关于宿主天然免疫在此过程中的作用知之甚少。既往研究表明,干扰素作为天然免疫抗病毒的重要细胞因子,可以高效抑制KSHV裂解复制,而干扰素缺失导致更多潜伏感染的病毒再激活进入裂解复制,表明干扰素在调控KSHV裂解复制和潜伏感染中具有重要作用,但其发挥作用的详细分子机制尚不清楚。 3月15日,中国科学院生物物理研究所邓红雨团队在《美国国家科学院院刊》(PNAS)上,在线发表了题为RNF213 modulates γ-herpesvirus infection and reactivation via targeting the viral Replication and Transcription Activator的研究论文。该研究首次揭示了干扰素诱导基因RNF213作为E3泛素连接酶促进KSHV“分子开关”蛋白RTA的泛素化修饰和降解、从而抑制病毒感染和裂解再激活的分子机制。 为了鉴定干扰素调控KSHV裂解复制和潜伏感染的效应因子,研究构建了干扰素诱导基因(Interferon-stimulated genes,ISGs)表达文库,并以研究KSHV、EBV的模式病毒MHV-68为筛选对象,鉴定了多个可抑制MHV-68复制的ISGs,其中RNF213具有显著抑制功能。研究对MHV-68感染复制各个关键步骤的检测发现,RNF213显著抑制病毒早期基因转录和基因组复制,而病毒蛋白RTA是启动这些下游步骤的“分子开关”。进一步的实验证实,RNF213通过下调RTA蛋白的表达水平,抑制RTA对早期基因的转录激活以及病毒基因组的复制。更重要的是,研究发现RNF213可以同样下调KSHV编码的RTA蛋白的表达并抑制其转录激活功能,提示RNF213具有调控KSHV潜伏感染和裂解复制的潜在功能。后续功能实验证实,RNF213显著抑制了KSHV从头感染(de novo infection)和裂解再激活(lytic reactivation)过程。 那么,RNF213如何下调RTA蛋白表达水平?研究明确了RNF213通过蛋白酶体途径而非溶酶体途径降解RTA蛋白,且RNF213与RTA之间存在直接互作。分子生化实验证明,RNF213作为E3泛素连接酶以泛素K48连接方式促进RTA的多聚泛素化修饰,进而通过蛋白酶体降解RTA蛋白(如图)。 综上,该工作首次鉴定了干扰素诱导基因RNF213抑制γ疱疹病毒复制的功能,揭示了RNF213与病毒“分子开关”蛋白RTA互作并介导RTA泛素化修饰和降解的分子机制。该成果有助于探究天然免疫尤其是干扰素如何调控γ疱疹病毒潜伏感染和裂解复制,为有效防控病毒感染提供了新思路。 生物物理所高光侠团队、张立国团队和邓红雨团队共同构建了ISG表达文库。研究工作得到国家自然科学基金、北京市自然科学基金和中国科学院等的支持。