《Cell Res:上海药物所徐华强课题组合作揭示多巴胺受体D1R与多巴胺结合特性以及潜在变构调节机制》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2021-03-15
  • 多巴胺(dopamine,DA)是人体一种重要的单胺类神经递质,参与对中枢神经系统(CNS)以及外周神经系统(PNS)多种生理功能的调控。在CNS中,DA介导神经细胞之间的信号传递,在大脑奖励机制、动机产生、欣快感发生以及行为调节等生理过程中发挥作用,而在PNS中,DA则主要是作为一种旁分泌信使,参与对血压、消化系统以及免疫功能等的调控。DA通过人体内的多巴胺受体(dopamine receptors, DRs)进行信号传递。DRs家族属于G蛋白偶联受体(G protein-coupled receptor, GPCR),包括D1R到D5R共五个受体成员。按照偶联下游G蛋白种类的不同,这些受体可以进一步分为D1类受体和D2类受体两组。其中,D1类受体包含D1R和D5R,主要与激活型G蛋白Gs偶联,刺激下游第二信使环状单磷酸腺苷(cAMP)的生成,进而影响细胞信号通路和功能。D1R的功能失调和包括帕金森氏病、精神分裂症、药物成瘾在内的多种神经系统疾病相关,使之成为治疗神经精神类疾病药物研究的重要靶点。

      内源性配体DA以及其它靶向D1R的合成类激动剂药物等正性结合配体,通过作用于D1R近胞外区的正性结合口袋激活受体。这些正性激动剂对受体的激活效应可被变构调节剂调节。与正性结合配体相比较,变构调节剂具有更高的GPCR亚型选择性和功能选择性等优势,表现出良好的成药潜力。其中,正性变构调节剂(positive allosteric modulator, PAM)可增强正性激动剂引起的胞内信号响应,与之起到功能的协同作用。目前已报道多种D1R PAM,包括CID2886111、DETQ以及LY3154207等,然而,这些PAM如何调节D1R构象并促进D1R激动剂活性的分子机制长期处于未知状态。此外,作为DRs的内源性配体,DA如何识别并激活DRs,这一科学问题也一直未得到阐释。

      前期,上海药物所徐华强课题组联合国内外多家合作单位,解析并报道了D1R结合选择性以及非选择性激动剂在内的多个信号复合体的高分辨率结构,结合多项功能实验数据,揭示了激活态D1R的配体选择性以及G蛋白选择性差异上的结构基础等分子机制1。在此基础上,徐华强课题组联合张岩课题组以及Bryan L. Roth课题组等对D1R内源性配体DA以及正性变构调节剂的结合以及调节机制进行了进一步探索,解析了在PAM LY3154207结合下,内源性配体DA以及合成类选择性激动剂SKF81297分别激活D1R形成的D1R-Gs信号复合体的近原子分辨率结构,并结合突变功能实验分析,揭示了DA 以及LY3154207的配体结合口袋拓扑结构特性以及LY3154207对D1R的潜在变构调节机制等,为设计更为合理高效的治疗CNS疾病的靶向D1R药物提供了重要的结构基础和理论依据。相关成果于2021年3月9日在线发表于国际知名期刊Cell Research.

      研究发现,DA和SKF81297与D1R的相互作用整体相似,不同的是,DA缺乏与D1R互作的延伸结合口袋(Extended binding pocket, EBP),这使得其对D1R的亲和力比SKF81297更弱。此外,研究人员发现,在SKF81297结合下,D1R的胞外区loop 2(ECL2)中的D187朝向TM2和TM7的极性氨基酸K81和D314,形成一个潜在的极性相互作用网络,而这种结构特征在DA结合下D1R的结构中不存在。与此对应的是,D1R-DA的整个近胞外端口袋在拓扑结构上比D1R-SKF81297的结合口袋更为开放,这预示着DA和SKF81297与D1R在结合动力学特性上存在差异。

      较高分辨率的结构使得PAM LY3154207的结合模式能够在D1R上清楚地得到展示。LY3154207以船式构象结合到D1R胞内区loop 2(ICL2)的正上方,介于TM3和TM4之间,这一结合模式与β2AR的PAM Cmpd-6FA与β2AR的结合类似。值得注意的是,本研究中LY3154207的结合模式与先前研究通过计算机分子动力学模拟得出的LY3154207的构象不同2。近期,四川大学邵振华团队等报道了D1R结合LY3154207的结构3,然而,本研究中LY3154207的结合模式与已报道的D1R结构中的LY3154207的构象也存在显著区别。对比LY3154207存在以及不存在时D1R-SKF81297的结构发现,D1R-SKF81297-LY3154207结构中正性激动剂SKF81297的结合模式比D1R-SKF81297结构中的深0.6 埃,使得其与S198形成更多的氢键相互作用。LY3154207结合下SKF81297与D1R能形成更大的极性相互作用网络,这表明,LY3154207可通过D1R的构象改变促进正性激动剂的结合,从而使得D1R维持在激活态,进而增强正性激动剂的激活效应。

      本研究冷冻电镜数据在上海药物所冷冻电镜平台以及浙江大学冷冻电镜中心收集。上海药物所2020届博士毕业生庄友文、北卡罗来纳大学教堂山分校Brian. Krumm以及浙江大学基础医学院博士生张会冰为该论文的共同第一作者。徐华强研究员、张岩教授以及Bryan L. Roth教授为共同通讯作者。上海药物所为本研究第一完成单位。研究工作同时得到了上海药物所蒋华良院士的支持和帮助。该工作获得了上海市市级科技重大专项、科技部重点研发计划、中国科学院先导项目、国家自然基金委、浙江省自然基金委以及美国国立卫生研究院等的项目资金资助。

    参考文献

    1.Zhuang,Y.et al. Structural insights into the human D1 and D2 dopamine receptor signaling complexes. Cell 184, 931-942 e918, doi:10.1016/j.cell.2021.01.027 (2021).

    2.Hao, J. et al. Synthesis and Pharmacological Characterization of 2-(2,6-Dichlorophenyl)-1-((1S,3R)-5-(3-hydroxy-3-methylbutyl)-3-(hydroxymethyl)-1 -methyl-3,4-dihydroisoquinolin-2(1H)-yl)ethan-1-one (LY3154207), a Potent, Subtype Selective, and Orally Available Positive Allosteric Modulator of the Human Dopamine D1 Receptor. J Med Chem 62, 8711-8732, doi:10.1021/acs.jmedchem.9b01234 (2019).

    3.Xiao, P. et al. Ligand recognition and allosteric regulation of DRD1-Gs signaling complexes. Cell 184, 943-956 e918, doi:10.1016/j.cell.2021.01.028 (2021).

  • 原文来源:https://www.nature.com/articles/s41422-021-00482-0;http://www.simm.ac.cn/web/xwzx/kydt/202103/t20210312_5974414.html
相关报告
  • 《上海药物所徐华强课题组合作首次揭示激活态多巴胺受体D1R和D2R配体选择性和G蛋白选择性的机理》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2021-03-04
    • 单胺类神经递质是广泛分布在人体内的一类化学信号分子,包括多巴胺(dopamine, DA)、肾上腺素(adrenaline)和五羟色胺(serotonin, 5-HT)等,这些信号分子共同调控人体内包括情绪以及记忆在内的多种生理功能并维持机体内环境稳态。多巴胺作为人体内一种重要的单胺类神经递质,通过多巴胺能神经系统,对中枢神经系统(CNS)以及外周神经系统(PNS)的功能进行调控。多巴胺能信号主要由人体内一类被称为多巴胺受体(dopamine receptors, DRs)的G蛋白偶联受体(G protein-coupled receptor, GPCR)介导,包括D1R到D5R共五个受体成员。按照偶联下游G蛋白种类的不同,这些受体可以进一步分为D1类受体和D2类受体两组。其中,D1类受体包含D1R和D5R,主要与激活型G蛋白Gs偶联,刺激下游第二信使环状单磷酸腺苷(cAMP)的生成,而包括D2R,D3R和D4R在内的D2类受体则主要与抑制性G蛋白Gi/o偶联,抑制cAMP形成。在五种DRs中,D1R和D2R是CNS中表达最为丰富的受体,主要分布在基底神经节和前额叶皮层中1,2。D1R和D2R介导的多巴胺能信号对于奖赏、认知、运动协调和神经内分泌功能等在内的高级脑部功能至关重要,其发生异常与许多神经精神疾病密切相关,包括阿尔兹海默症(Alzheimer's disease, AD)、帕金森氏病(Parkinson’s disease, PD)、精神分裂症、认知障碍、注意力缺陷多动症(Attention deficit hyperactivity disorder, ADHD)以及药物成瘾和滥用等。作为多巴胺受体家族的代表成员,D1R和D2R是治疗PD以及精神分裂症的热门药物靶点。 D1R选择性激动剂长期以来被认为是治疗PD的有效方法,然而,目前上市的D1R激动剂药物大多为D2样受体的选择性激动剂。已经开发的D1R选择性激动剂由于受到代谢快(儿茶酚结构特征)以及无法透过血脑屏障等缺陷影响,尚无通过临床研究用于神经精神类疾病治疗3;在治疗精神分裂症中,尽管可以通过目前的药物作用D2样受体来有效地治疗正面症状,但它们在减轻负面症状和认知缺陷方面效率低下,而D1R选择性激动剂则可以作为精神类疾病患者提高认知的潜在治疗途径。此外,D1R激动剂也被普遍认为是治疗AHDH以及药物成瘾的有效治疗方法。通过对D1R和D2R受体进行结构药理学研究并揭示其配体选择性的分子机制,对理解配体结合特性、受体激活以及设计更为高效的多巴胺受体靶向抗神经精神疾病类药物具有重要的科学意义和临床应用价值。 目前,尽管已有若干多巴胺受体亚型的结构获得解析,包括D2R,D3R和D4R与拮抗剂结合复合物的晶体结构,以及D2R(突变型)与激动剂复合物的低分辨率冷冻电镜结构,然而,对于D1类受体,尤其是D1R,自D1R基因被发现及克隆近30年来,其受体结构仍处于未知状态,极大地限制了人们对D1R配体识别和受体激活机制的理解,成为制约基于结构的靶向D1R受体药物研发的重要科学瓶颈。 针对以上科学难题,中国科学院上海药物研究所徐华强课题组,联合美国匹兹堡大学张诚课题组、浙江大学医学院与浙江省良渚实验室张岩课题组以及北卡罗来纳大学教堂山分校Bryan L. Roth课题组等,应用冷冻电镜技术(Cryogenic electron microscopy, Cryo-EM)首次解析了帕金森病治疗药物apomorphine(DRs泛激动剂)、D1R/ D5R选择性全激动剂SKF81297以及G蛋白信号偏好性D1R/D5R选择性部分激动剂SKF83959激活下D1R与下游Gs蛋白复合物的高分辨率冷冻电镜结构,分辨率为2.9埃 - 3.0埃。同时,科研人员解析了帕金森病治疗药物bromocriptine激活下D2R(野生型)与Gi复合物2.8埃分辨率的冷冻电镜结构(图1)。这些结构数据结合功能实验结论,揭示了D1R和D2R配体结合口袋的拓扑结构特性、潜在的受体激活机制、配体激动剂选择性识别并激活D1R和D2R的分子机制、D1R的G蛋白偏好性激活决定因素以及D1R和D2R在G蛋白选择性差异上的结构基础等。 以上研究成果为以D1R和D2R为药物靶点的选择性激动剂药物的设计和开发,以及G蛋白信号偏好性D1R靶向药物设计提供了重要的结构基础和理论依据。研究论文“Structural insights into the human dopamine D1R and D2R receptor signaling complexes”,以长文形式于2021年2月11日在国际顶级期刊Cell杂志上在线发表。这是继2月5日发表在Molecule Cell上D3R的工作之后徐华强课题组和张岩课题组等在多巴胺能系统方向进行结构和功能系列研究的又一突出研究进展,进一步加深了人们对该系统的认识。 研究发现,D1R在结构上表现为经典的七次跨膜螺旋结构,其中配体正性结合位点位于受体胞外端,由胞外loop以及跨膜螺旋部分组成;Gs蛋白偶联界面位于受体胞内端,由近胞内端结构域组成。SKF81297、SKF83959以及apomorphine都属于D1R的儿茶酚胺类激动剂,在与D1R的结合上,三种激动剂与受体上结合口袋的相互作用模式类似,其中最为典型的是配体上的氨基与D1033.32之间形成离子相互作用,这个作用位点在所有单胺类受体上及其保守。在结合模式上,三种激动剂的儿茶酚结构朝向TM5,但整体构象存在细微差别,而这种细微差别导致了不同配体在激活效力以及信号通路偏好性的差异。通过对比D1R与SKF81297、SKF83959的结构细节,研究团队发现,虽然SKF83959仅仅比SKF81297多了两个甲基,然而,受到SKF83959结构上azepine环上额外的甲基与D1R上疏水氨基酸F3137.35、W3217.43空间位阻效应影响,相比于SKF81297,SKF83959更接近TM5并限制了TM5向跨膜区中心内移,使得SKF83959表现出比SKF81297更弱的激活效力,这与salmeterol部分激活β2AR的原理相似。此外,SKF83959作为D1R的G蛋白偏好性激动剂的机制长期以来始终未得到解释,通过结构比对和β-arrestin募集实验分析,研究团队发现与SKF83959上azepine环内额外的甲基相互作用的D1R TM5上的氨基酸残基F2886.51、F2896.52以及TM7上的V3177.39在SKF83959的G蛋白偏好性活性上起重要作用,为设计更为安全的G蛋白偏好性D1R激动剂提供了重要的结构基础和理论依据。 研究人员对比D1R与非选择性激动剂apomorphine的结构发现,apomorphine的结合比SKF化合物更远离D1R的胞外loop 2(ECL2)。进一步比较D1R和D2R的结构,研究团队发现D1R和D2R的ECL2在拓扑结构上存在明显的差别,D2R的ECL2上的“CIIA”基序相比于D1R的“CDSS”基序更为靠近正构结合位点中心,如果SKF化合物和apomorphine以类似的模式结合到D2R,D2R的ECL2,尤其是氨基酸残基I184,将与SKF化合物而不是apomorphine发生空间位阻效应。比较D2R-bromocritine的结构发现,bromocriptine远离D2R ECL2区域,避免了与之发生位阻效应,这些结果表明ECL2在D1R和D2R的配体选择性上发挥重要调控作用。Bromocriptine在对D1R的结合力上比D2R大概低50倍。通过D1R和D2R的结构比对发现,D1R的配体结合口袋更为狭窄,相比于D2R,D1R的TM6近胞外端往跨膜中心内移5.5埃并于bromocriptine发生一定程度空间位阻,D1R上的非保守的带正电氨基酸K81也在能量上不利于和bromocriptine的结合,这些因素共同决定了bromocriptine对D2R更高的亲和力(图2) 虽然D1R与D2R分属于同一GPCR家族,然而在进化树分析上D1R与β2AR更为接近。与之对应的是,在结构上,D1R和β2AR表现出高度的相似性,尤其是在跨膜区TM5-7,保守的P5.50I3.40F6.44基序以及DR3.50Y基序上,这些发现也预示着D1R和β2AR具有相似的激活机制。同为单胺类受体,D1R和β2AR表现出对不同单胺类神经递质的选择性。研究团队发现,将D1R TM7上的V317突变成β2AR对应的氨基酸残基天冬酰胺(N),能显著性提高D1R对β2AR选择性神经递质肾上腺素及其衍生物异丙肾上腺素的结合效力,表明V3177.39在决定D1R对多巴胺而非其他单胺类神经递质的选择性上至关重要。 在下游G蛋白偶联上,D1R主要偶联到Gs,而D2R主要偶联Gi,科研人员同时对两者偶联下游G蛋白选择性的机制进行了探索。结果发现,激活态下D1R和D2R的近胞内端结构的构象差异直接引起各自在偶联下游G蛋白的不同(图3),这些差异体现在以下几个方面:①. D1R TM6的近胞内端相比于D2R外移了8.4埃,以容纳Gαs上α5螺旋C末端庞大的氨基酸侧链,而D2R近胞内端区域形成的凹腔不足以容纳Gαs的C末端复杂的氨基酸侧链并与之发生空间位阻,相反,却可以容纳Gαi的C末端较为简单的氨基酸侧链,从而导致D1R和D2R对不同G蛋白的选择性;②. D1R的TM5相比于D2R较长,往胞内区更多延伸了2.5个α螺旋并于Gαs的Ras结构域形成进一步的相互作用;③. D1R的ICL2相比于D2R多了1个α螺旋,使之与Gαs的Ras结构域形成更强的疏水相互作用网络。这些因素表明TM6和α5螺旋等的构象决定着D1R和D2R对Gs/ Gi的选择性,这也与徐华强研究员团队在2018年报道的Rhodopsin-Gi结构通过分子动力学模拟所揭示的Gs/Gi选择性机制相符合4。 综上所述,研究团队通过解析选择性D1R激动剂以及非选择性多巴胺受体激动剂激活下D1R-Gs以及D2R-Gi复合物的结构,结合功能试验数据,阐释了D1R和D2R在配体选择性以及G蛋白选择性识别上的机制等重要的生物学问题,为开发以D1R和D2R为靶标的选择性药物以及更为安全的抗神经精神疾病类药物提供了重要的结构和理论基础。 同时,2月11日同期Cell上,来自四川大学的邵振华团队和北京大学的孙金鹏团队以“背靠背”形式发表了“Ligand recognition and allosteric regulationof DRD1-Gs signaling complexes”的研究论文,该研究报道了D1R与不同激动剂配体以及D1R与变构调节剂的结构,揭示了D1R的激动剂配体以及变构调节剂的结合特性以及潜在的变构调节机制。值得一提的是,针对D1R与内源性配体dopamine以及正性变构调节剂的的结合以及调节机制这一科学问题,徐华强课题组联合张岩课题组以及Bryan L. Roth课题组等也开展了进一步的研究,相关成果已经以预印本形式在线发表在BioRxiv网站上(https://www.biorxiv.org/content/10.1101/2021.02.07.430101v1)。 本研究冷冻电镜数据在上海药物所冷冻电镜平台以及浙江大学冷冻电镜中心收集。上海药物所2020届博士毕业生庄友文、上海药物所博士生徐沛雨、浙江大学基础医学院博士后毛春友、美国匹兹堡大学博士后Lei Wang、北卡罗来纳大学教堂山分校Brian. Krumm以及美国温安洛研究所X. Edward. Zhou为该论文的共同第一作者。徐华强研究员、张诚教授、张岩教授以及Bryan L. Roth教授为共同通讯作者。上海药物所为本研究第一完成单位。研究工作同时得到了上海药物所蒋华良院士和美国温安洛研究所Karsten Melcher教授的支持和帮助。该工作获得了上海市市级科技重大专项、科技部重点研发计划、中国科学院先导项目、国家自然基金委、浙江省自然基金委以及美国国立卫生研究院等的项目资金资助。
  • 《上海药物所徐华强课题组合作揭示多巴胺受体D3配体选择性和激活Gi的结构基础》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2021-03-04
    • 多巴胺(dopamine, DA)是人体中枢神经系统和周围神经系统的主要神经递质之一,通过结合多巴胺受体发挥众多重要的生理功能,包括学习、记忆、认知、奖励、情感、调节情绪和控制运动等1。多巴胺受体属于G蛋白偶联受体(G protein-coupled receptor, GPCR)超家族,包含D1R到D5R共五个受体成员,其中D1R和D5R两个亚型偶联激活型G蛋白(Gs),而D2R、D3R和D4R通过激活抑制型G蛋白(Gi)发挥其生物学功能。多巴胺信号转导的失衡和改变是导致多种精神类疾病的原因之一,这些疾病包括帕金森症(parkinson's disease)、精神分裂症、阿尔兹海默症和亨廷顿氏病等。作为多巴胺受体中重要的成员,D3R是当前帕金森病、药物成瘾和精神分裂等疾病的热门靶点之一。临床用于帕金森病治疗的药物多为D2R和D3R的激动剂,如临床获批用于帕金森病和不安腿综合征(Willis-Ekbom病)治疗的普拉克索(pramipexole)等2,3。普拉克索和小分子激动剂PD128907均能激活D2R和D3R,尤其对D3R亚型表现出优于D2R和D4R的选择性。多年以来,以抗帕金森疾病药物为代表的大部分多巴胺受体激动剂都是以分布更为广泛的D1R和D2R为药物靶点。但是,越来越多的研究表明:D3R更集中地分布在大脑中某些对精神疾病极为关键的部位,例如腹侧纹状体,包括伏隔核,丘脑,海马体和皮质。实际上,内源性配体多巴胺和大部分用于临床治疗的多巴胺受体激动剂药物,都表现出对D3R亚型更高的亲和力。这些都表明D3R受体在精神疾病的发生发展和药物开发中的重要地位和价值。通过对D3R受体进行结构药理学研究揭示配体选择性的分子机制对理解D3R激活和设计高效低毒的多巴胺受体靶向药物具有重要的理论意义和应用价值。目前尽管已有若干多巴胺受体亚型的高分辨率结构获得解析,包括D2R,D3R和D4R与拮抗剂结合复合物的晶体结构和D2R与激动剂复合物的冷冻电镜结构等。然而,D3R与激动剂结合复合物的结构仍未获得解析,极大地限制了人们对D3R配体识别和受体激活机制的理解,成为了制约基于结构的靶向D3R受体药物研发的瓶颈。   2021年2月5日,中国科学院上海药物研究所徐华强研究员和程曦副研究员、浙江大学医学院与浙江省良渚实验室张岩研究员、以及北卡罗来纳大学教堂山分校Bryan L. Roth教授等共同在Molecular Cell杂志上在线发表了他们最新的研究成果“Structures of the human dopamine D3 receptor-Gi complexes”,首次解析了D3R分别与帕金森病治疗药物普拉克索和小分子激动剂PD128907,以及抑制型Gi蛋白复合物的高分辨率冷冻电镜结构,揭示了配体选择性识别和激活D3R的分子机制。 研究团队采用单颗粒冷冻电镜分别对帕金森病治疗药物普拉克索和小分子激动剂PD128907激活D3R后形成的复合物分别进行了结构重塑,最终解析了D3R在两种配体激活情况下与Gi蛋白的复合物结构。其中,普拉克索与D3R-Gi复合物结构的分辨率为3.0埃;PD128907与D3R-Gi复合物结构的分辨率达到了2.7埃,代表了当前A型GPCR冷冻电镜结构研究的最高解析度(图1)。 通过比对D3R受体分别与普拉克索和PD128907两种激动剂结合的结构细节,研究团队发现了两种小分子激动剂与受体结合具有明显的特征区别;通过与D2R和D4R激活结构的比对分析发现,结合口袋中TM6上的6.55位组氨酸的空间位置是决定配体对多巴胺受体亚型D2R、D3R和D4R选择性的决定性因素;研究同时对多巴胺受体各亚型偶联下游Gs和Gi选择性的机制进行了探讨,发现受体TM6上的三个特定位置的差异残基(6.31, 6.36和6.38位)是导致不同多巴胺受体亚型选择性偶联Gs或Gi的决定因素,这与徐华强研究员团队在2018年报道的Rhodopsin-Gi结构所揭示的Gs/Gi选择性机制相符合4;研究进一步发现,D3R与其他Gi偶联GPCR类似,均通过高度相似的静电相互作用类型偶联下游Gi蛋白;此外,研究揭示了多巴胺受体偶联Gi和Go这两类高度保守的G蛋白类型选择偏向性的分子基础。D3R具有Go蛋白的选择偏向性,而D2R对Gi蛋白具有更高的选择性。通过对D2R和D3R的结构观察发现,D3R的TM6相对D2R更具刚性,摆动幅度更小,导致产生了更小尺寸的跨膜螺旋胞内口袋,而Go蛋白相对Gi具有相对更小的氨基酸侧链,因此D3R较D2R表现出更为显著的Go蛋白偶联偏向性(图2)。 综上所述,团队利用单颗粒冷冻电镜技术首次解析了选择性D3R激动剂、D3R受体与效应G蛋白的复合物结构,从而在原子分辨率上详细阐释了D3R受体选择性识别配体,被激活后与G蛋白偶联的分子机制。该成果阐述了多巴胺受体D3R配体识别选择性和激活机制等重要的生物学问题,也为开发以多巴胺受体为靶标的选择性药物提供了重要的结构模型。   冷冻电镜数据在浙江大学冷冻电镜中心收集。研究工作同时得到了中国科学院上海药物研究所蒋华良院士和余学奎研究员,以及美国温安洛研究所的Karsten Melcher教授的帮助。上海药物研究所与浙江大学基础医学院联合培养博士生徐沛雨、上海药物研究所与上海科技大学联合培养博士生黄思婕、浙江大学基础医学院博士后毛春友和北卡罗来纳大学教堂山分校的Brian E. Krumm为本文共同第一作者。浙江大学为第一完成单位。该工作获得了上海市市级科技重大专项、科技部重点研发计划、中国科学院先导项目、国家自然基金委、浙江省自然基金委等的资助。