《合成生物学未来发展需整合生物学重设计理念》

  • 来源专题:生物科技领域知识集成服务
  • 编译者: 刘建华
  • 发布时间:2014-05-16
  • 2014年3月27日,美国哈佛大学、哈佛医学院、波士顿大学、加州大学伯克利分校、劳伦斯伯克利国家实验室等机构的多名合成生物学专家在《Cell》上发表题为《整合生物学重设计理念——合成生物学的起源与发展方向》的综述,介绍合成生物学早期的指导原则,利用这些原则在微生物转录和代谢研究基础上构建复杂系统方面取得的成就,以及哺乳动物细胞工程所取得的进步。本文重点介绍综述总结的重要结论。

    合成生物学仍然处于发展早期。如果仅从时间上与微芯片产业做比较,考虑到首个晶体管诞生于1947年,那么合成生物学相当于发展到1960年的晶体管。在不久的将来,希望合成生物学的方法已渗透到生物学群体中,尤其是采用极重要的工程理念进行规范设计和广泛的预实验规划,以避免过多重复实验和错误,这将比现有的模式更具成本效益。

    如果合成生物学家希望借助生物学的力量,他们需精通生物学在演化过程中不断调整的各种理论和方法。例如,基因表达、代谢、蛋白质结构和功能。自然界能同时操纵所有这些工作,合成生物学家同样也需要具备这样的能力。生物学的重设计必将涉及多方面工程技能的整合。这导致合成生物学未来发展的关键问题:工程师是否需要理解生物学因为其仍存在许多未知点,或者生物学被重设计后工程师只需以适合大脑创造过程的简单形式工作?如果是计算机产业,答案是后者,例如材料科学家调整无机物以使其应用于晶体管,整个过程稳健且可抽提。但截至目前合成生物学中还没有一个解决方案可以无限制的套用。此外,人类很难重现大自然创造的某些成果,例如,蛋白质工程师无法构建从头设计的蛋白质,尤其是酶类。因此,大多数合成生物学研究需要不断重复地借助自然界已有的元件,未来该领域开发过程中最有效的做法仍是扩大对自然界中生物工作原理的认识。

相关报告
  • 《与五家使用AI工程生物学的合成生物学公司会面》

    • 来源专题:人类遗传资源和特殊生物资源流失
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-09-24
    • 电视和广播称“人工智能即将来临”,它将接替您的工作并在国际象棋上击败您。 但是,人工智能已经来临了,它可以在国际象棋上击败您,这是世界上最好的。在2012年,Google还使用它来识别YouTube视频中的猫。今天,这就是特斯拉拥有Autopilot,Netflix和Spotify似乎“读懂你的思想”的原因。现在,人工智能正在改变合成生物学的领域以及我们如何设计生物学。它可以帮助工程师设计出新的方法来设计基因回路,并且通过已获得的巨额投资(过去10年中的12.3亿美元)及其正在破坏的市场,它可能对人类的未来产生重大影响。 人工智能的概念相对简单,它是具有推理,学习和决策行为的机器编程。一些AI算法(只是计算机遵循的一组规则)在这些任务上非常出色,以至于可以轻易胜过人类专家。 我们听到的关于人工智能的大多数信息都涉及机器学习,这是AI算法的子类,可以从数据中推断出模式,然后使用该分析进行预测。这些算法收集的数据越多,其预测就越准确。深度学习是机器学习的一个更强大的子类别,其中大量称为神经网络(受大脑结构启发)的计算层协同工作以增加处理深度,从而促进诸如高级面部识别(包括iPhone上的FaceID)之类的技术)。 [有关人工智能及其各个子类别的更详细说明,请查看本文及其流程图。] 无论AI的类型或用途如何,我们都处于计算革命之中,它将其卷须扩展到“计算机世界”之外。很快,AI将影响您服用的药物,燃烧的燃料,甚至是您用来洗衣服的洗涤剂。 特别是生物学,是人工智能最有希望的受益者之一。从调查导致肥胖的遗传突变到检查癌细胞的病理样本,生物学产生的数据非常复杂,令人费解。但是,这些数据集中包含的信息通常提供有价值的见解,可用于改善我们的健康状况。 在合成生物学领域,工程师寻求“重新连接”活生物体并为其编程以新功能,许多科学家正在利用AI设计更有效的实验,分析其数据并使用其来创建突破性的疗法。这是五家将机器学习与合成生物学相结合的公司,为更好的科学和更好的工程铺平了道路。 Riffyn催化干净的数据收集和分析 (加州奥克兰,成立于2014年,已筹集了2490万美元) 机器学习算法必须从大量数据开始-但是,在生物学上,要生成好的数据非常困难,因为实验耗时,繁琐且难以复制。幸运的是,有一家公司正在通过简化科学家的工作来解决这一瓶颈。 Riffyn基于云的软件平台可帮助研究人员标准化,定义和执行实验,并简化数据分析,这使研究人员能够专注于进行实际的科学研究,并使使用机器学习算法从他们的实验中获得更深刻的见识成为日常现实。 使用此平台,可以更有效地进行实验,从而导致成本大幅下降,生产率和质量得到改善,并且准备使用复杂的机器学习技术进一步分析数据。这意味着公司可以使用这项技术来开发用于癌症治疗的新蛋白质,并且他们可以比以前更快,更好地做到这一点。里芬(Riffyn)已经与15家全球生物技术和生物制药公司中的8家进行了合作-他们成立于五年前。 Microsoft Research Station B:汇集编程生物学的难题 (英国剑桥,于2019年正式启动) 合成生物学世界中有许多活动的部分,这使得尽可能简化和整合操作变得困难而至关重要。在过去的十年中,Microsoft Research的计算生物学部门B站一直在开发生物学的机器学习模型,以解决此问题并加快从医学到建筑的各个领域的研究。 它的努力也以各种新的伙伴关系的形式获得了回报。借助Synthace,它正在开发用于自动化和加速实验室实验的软件。 B站还与普林斯顿大学合作,通过利用基于机器学习的方法从生物生长不同阶段拍摄的图像中提取图案,研究生物膜背后的机制(与细菌菌落如何产生抗生素抗性有关)。 B站还与牛津生物医学公司合作,该公司利用这些机器学习功能来改善针对白血病和淋巴瘤的有前途的基因疗法。这也许是合成生物学影响最大的领域之一:设计与多种疾病作斗争的疗法。 Atomwise:深度学习解码结构蛋白设计的黑匣子 (总部位于美国加利福尼亚州旧金山,成立于2012年,已筹集了5100万美元) Atomwise正在通过其称为AtomNet的深度学习平台来应对药物开发,该平台可以快速对分子结构进行建模。它可以准确地分析小分子内的化学相互作用,从而预测针对埃博拉病毒至多发性硬化症等疾病的功效。通过利用有关原子结构的数据,Atomwise设计了新颖的疗法,否则将几乎不可能开发。 他们与包括Charles River Laboratories,默克,多伦多大学和杜克大学医学院在内的机构建立了众多学术和公司合作伙伴关系,这些机构正在提供许多现实世界的应用程序和机会来推动这项研究的发展。他们最近还宣布了与江苏汉寿药业集团的高达$ 1.5B的合作,该公司是今年最大的生物制药IPO之一。 尽管Atomwise的分子设计方法功能强大且可以有效抵抗多种疾病,但还没有一种完美的方法来进行计算发现。那就是Arzeda进来的地方。 Arzeda:使用从头深度学习重写蛋白质设计规则 (华盛顿州西雅图市,成立于2008年,已筹集了1520万美元) Arzeda是一家来自华盛顿大学贝克实验室的公司,利用其蛋白质设计平台(当然植根于机器学习算法)来对蛋白质进行工程改造,从工业酶到农作物及其微生物群落。 Arzeda完全从零开始(或从头开始)构建其分子,而不是优化现有分子,以执行自然界中未发现的新功能;深度学习技术对于确保其设计的蛋白质正确折叠(非常复杂的计算问题)并按预期发挥功能至关重要。一旦完成计算步骤,就可以通过发酵(就像啤酒一样)来生产新蛋白质,而绕过自然进化过程以有效地生产全新的分子。 分布式生物:彻底改变流感,癌症,蛇咬等的未来 (加利福尼亚州南旧金山,成立于2012年,由许可技术自筹资金) 在设计范围的另一端,Distributed Bio利用合理的蛋白质工程技术来优化现有的抗体,这些抗体是您体内的蛋白质,可以检测细菌并与其他引起疾病的入侵者抗争,从而创造出新颖的疗法。 Tumbler平台是该公司拥有的众多免疫工程技术之一(从通用流感疫苗到广泛覆盖的蛇抗蛇毒)。 Tumbler使用机器学习方法创建了超过5亿种起始抗体变体,以扩展和量化分子中哪些变化最有价值的搜索空间。然后,它会对序列进行评分,以预测它们在现实生活中与目标的结合程度,并使用“有价值的变化”信息进一步改善得分最高的序列。随着最高级序列的合成和在实验室中的测试,生产周期继续进行。最终,原型分子应运而生,以实现预期的治疗目的-自然界中不一定观察到这种现象,而是结合了所有可能的最佳特征。 Tumbler已帮助实现了超越传统单一靶标药物开发的广泛应用-从设计可同时与多个靶标结合的抗体到创建嵌合抗原受体T细胞(CAR-T)治疗(与Chimera Bioengineering一起)用于癌症治疗具有降低的毒性,此端到端优化平台大规模产生理想抗体的能力是空前的。 尽管这一进展令人兴奋,但人工智能并不是我们对自然界研究的普遍替代,也不是开发治疗人类疾病的唯一方法。有时,它在技术上可能没有用,甚至从道德上讲也不是合理的。随着我们继续获得这项技术的好处并将其日益融入我们的日常生活中,我们必须继续就合成生物学和AI创新的设计,实施和道德操守进行对话。我们站在科学和人类新时代的悬崖上。 ——文章发布于2019年9月19日
  • 《美国合成生物学技术的发展与监管概述》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2018-11-15
    • 8月10日,War on the Rock网站(美国分析和评论政策及国家安全问题的平台)发布的《合成生物学:双重用途新技术的希望和危险》(Synthetic Biology: The Promise And Peril Of A New Dual-use Technology)报告指出,合成生物学是一种相对较新的技术,其未来的应用越来越受到工业界和学术界的关注。与其他技术一样,合成生物技术也具有潜在的双重用途(商业和军事用途)。 尽管很多科学家和工程师们都期待合成生物学技术能够创造出新的商业化工艺和产品,但是一些专家警告,合成生物学也有可能革新军事力量——尤其是那些新型的军用生物毒剂和传染疾病,一旦被错误使用将会非常危险。 报告指出,美国约翰·霍普金斯大学健康安全中心(John Hopkins Center for Health Security)近期举办了一场集体演习,假设一种名为“Clade X”的生物工程病毒被一个暴力极端组织作为武器故意释放,并且在20个月后就造成了1.5亿人死亡。美国列克星敦研究所(Lexington Institute)的防务工程顾问和军事分析专家Loren Thompson警告称,合成生物学可以让一种超级病原体发展到“能够威胁大量人口生存,甚至是危及整个文明存活的”地步。尽管这些担忧可能还为时过早,但是美国政府必须要充分考虑到国家和非国家行为体滥用这种新型生命科学技术的可能性。 关于核技术、生物和化学技术的双重用途的争论早已不是什么新鲜事了。虽然核物理已经明显改善了发电技术和健康科学,但是核武器同样也增强了持有国的军事力量,并且在大部分情况下,还带来了与商业核技术密切相关的核扩散挑战。 数十年来,人们一直担心化学与生命科学的进步会导致生物工程病毒和新型化学武器的发展。与此同时,工业界却利用这些同样的技术进步为普通大众提供了新的家用产品和更广泛的奢侈服务选择。包括定向能武器、商用无人机和网络系统在内的其他两用技术所面临的挑战基本上都是“如何在这些技术的商业化增长和防止它们被用于威胁美国安全之间取得平衡”。 为了响应美国国防部副部长Chris Hassell的要求,美国国家科学院于2018年6月完成了一项名为“合成生物学时代的生物防御”的研究,该研究主要调查生物有机体生成致病因子或毒素的可能性操作。该研究试图解决三个问题:与合成生物学有关的安全性问题有哪些?这些安全威胁出现的时间有多快?以及避免这些问题出现的选择有哪些? 美国国家科学院发布的《合成生物学时代的生物防御》(Biodefense in the Age of Synthetic Biology)报告提供了评估上述问题的框架,分别确定了对于重新构建已知致病病毒、增加已知细菌危险性,以及通过原位合成(在人体内)制造生化物质这些问题中最重要的关注点。根据该报告,好消息是这项技术的掌握仅限于拥有先进实验室和良好资源的国家。就暴力极端主义组织目前的能力来说还无法掌握。坏消息是,技术变革的快速发展为美军潜在武器系统的最终开发和利用带来了很大的不确定性。 随着技术和潜在威胁的演变,美国各政府机构(包括国防部、卫生部、国土安全部、农业部和商务部)将对合成生物学产生兴趣。届时美国政府应如何制定指导这项新技术发展的战略? 美国政府在2017年国家安全战略中明确将生物威胁定性为一个令人关注的问题。战略报告指出,无论是故意袭击、意外还是自然爆发,目前美国本土的生物威胁正在增多,需要采取行动从源头上解决这些问题。然而该政策声明与2009年美国国家应对生物威胁战略没有显着差异。它没有为解决合成生物学的两用挑战提供足够的指导。英国政府近期发布了一项比2009年美国战略更进步一些的“生物安全战略”,但仍然错误地试图用同一套指导方针解决所有生物威胁。 美国政府应该在制定政策鼓励合成生物学的商业增长的同时监测生物威胁的潜在发展。这绝非易事,良好的政策依赖于明确的定义、明确的角色与权限分配,还有为确保政策取得进展所做出的评估。如果美国政府希望在这一方面做出强有力的协调工作,那么必须意识到,不能单纯只让医疗专业人员应对这种多样化的生物威胁,同样重要的是要明确各个不同的机构都要有不同的关注点。 解决这一项新型两用技术问题需要设计一种精细而深思熟虑的方法,而不是套用墨守成规的样板策略。 定义问题 合成生物学远远不止是基因工程。它融合了生物学、计算机科学以及用以创建标准化自动化生物系统的工程学。虽然合成生物学可能涉及对生物材料的操作,但其实际的应用远远超出了基因改造食品或动物的范围。比如说,合成生物学可以通过在生物体中修改现有特征或引入新特征来制造新产品。这种方式往往比传统技术更具兼容性和更便宜。 许多人都熟悉3D打印在商业和国防应用方面的潜力。美国可以考虑通过采用类似的工程方法来解锁技术的潜力:使用纳米级的生物和化学材料来制造非油井来源的喷气燃料,使用细菌运行的电池,使用不需要窑的砖和更环保的工业化学品等。 此外,合成生物学在开发新的医疗对策和诊断方法方面带来显着的益处。 与过去几十年的生物技术蓬勃发展相似。美国政府在制定关于合成生物学技术相关政策时,要考虑到这种政策不能过度妨碍工业,但又可以对滥用生物技术的危险进行一定程度的监督。正如2015年美国国家科学院早期报告所指出的那样,工业正在以更低的成本、更快的生产速度和更高的生产能力生产生物基产品。 至少要有一个监管制度来确保这些新生物、新化学产品和新方法的安全商业化。2018年美国国家科学院的报告就增加现有病原体危险性、以新方式制造化学品和生物化学品以及制造人类宿主生物武器这三个方面相关的问题进行了一个可靠严谨的评估。需要明确的是,任何国家在合理地使用这种技术开发新型生物武器之前,仍然需要解决一些重大障碍。该报告的评估框架能够指导政策制定者在新技术发展过程中应注意什么问题。最大的挑战在于要将这些观察结果转化为持续有效的国家政策。 国家安全战略对以合成生物学为手段发展新型和危险病原体的关注是毋庸置疑的,但更大的国家安全挑战很有可能来自该领域新的商业和军事产品的开发。很显然,这项技术不是美国专属的。其他国家也希望开发合成生物学的潜在好处。特别是中国在这一领域正在迅猛发展,美国应该对其在美国制药公司的大型投资进行严格审查。 制定一项国家政策 《2017年国防授权法案》(2017 National Defense Authorization Act)要求国防部、卫生部、国土安全部和农业部制定新的国家生物防御战略与实施计划。特朗普政府尚未公布这一计划,但如果它仍然与以往应对一般生物威胁的国家战略相类似的话,那么该计划将会是更多地对生物有机体威胁进行一个总体的概括,而不是具体明确执行机构的行动方向。这种制定计划的方法也许对医疗专业人员有指导意义,但是对于制定军事行动、打击恐怖主义和保护国土安全领域政策方面却毫无裨益。 美国政府的事故管理方法主要是“全危害”(all-hazard)响应,在可允许的框架范围内整合政府的各种能力来缓解蓄意造成的和自然的威胁。 目前很难评价政府在应对生物威胁方面做得如何。2009年的国家战略错误地混淆了生物疾病暴发和生物恐怖主义事件,因此对政策制定的指导毫无帮助。美国政府不能一直采取这样的做事态度,他们必须清楚生物威胁并非都是同质的,不能用一套模板解决所有的问题。 在政府内部,当“生物威胁”这一话题出现时,“生物防御”、“生物保障”、“生物安保”和“生物安全”等专业术语常被随意使用并且被胡乱定义。这些术语对不同的机构来说意味不同。例如,非医疗人员可能会特别惊讶于生物学监测原来不是用于监测危险的生物有机体,而是用于监测整个生物环境中包括化学、生物、辐射、自然和人为的危害,以及这些危害对人类、动物和植物的影响等。 由于各机构之间缺少良性的协调,美国政府在建立重复项目上面浪费了大量的时间和资源,更糟的是,忽略了机构之间明显的能力差距。要制定一项利用合成生物学潜在商业用途的国家战略,并且同时减轻心术不良者试图开发新型生物武器时所带来的影响,将需要更灵活的手段。 在寻求降低对商业化事业造成影响的过程中,政策制定者所面临最大的问题是他们在“如何防范传统和非传统生物威胁”方面缺乏足够的指导。这就是为什么政府不应该采取一种“试图解决所有自然疾病暴发和人为生物威胁”的普适性政策办法,而应明确阐述其长期的发展内容和目标。