《欧洲科学家正在开发一种新型量子空间传感器,可精确测量地球的重力场变化》

  • 编译者: 张宇
  • 发布时间:2024-10-20
  • 近日,一个欧洲科学家团队正在开发新的太空传感器,这些传感器使用量子技术来非常精确地测量加速度。这个项目被称为CARIOQA,它使用量子技术来测量加速度,这标志着未来太空任务的一个关键步骤,这些任务将追踪地球上微小的重力场变化。这些先进工具将为观测地球的变化提供更清晰的视角,以更高的精度和紧迫性提供有关冰川、海平面上升和地下水位变化的实时数据。

    测量微小的重力差异能够有助于揭示地下水的存在、极地冰川的融化量,甚至评估对自然资源的潜在影响。CARIOQA项目正在努力通过利用量子加速度计的卓越灵敏度来改进重力测绘并生成“更高分辨率”的地球重力地图。要从太空测量重力,准确跟踪卫星的加速度至关重要。这是使用所谓的加速度计完成的,这些加速度计监测卫星上自由落体的测试质量。通过将量子加速度计安装到卫星上,科学家们将研究冰川的运动、海平面上升和地下水位的变化,以前所未有的方式应对气候变化。欧盟的财团投资1700万欧元支持此项研究,希望到2030年在轨发射世界上第一个量子加速度计。

    由欧洲委员会发起,并由量子旗舰计划支持的一个雄心勃勃的新项目,旨在通过提供有关冰层融化、地下水枯竭和海洋环流变化的更准确数据,从而彻底改变地球的空间环境监测系统。

    这个名为CARIOQA-PMP的新项目耗资1700万欧元,旨在通过整合量子传感器的独特功能来改进传统的重力传感方法。

    地球上的物质,如岩石、矿物和水,在不同地方具有不同的密度。地球的重力场受到这些物质质量的影响。一个地区的质量越大,特定地点的引力就越强。当大量物质移动或发生变化时,例如冰川融化并流入海洋,或地下水枯竭时,就会改变当地的重力。

    传统的重力测绘可以检测到这些差异,从而告诉我们一些重要的事情,比如地下水可能在哪里,极地地区融化了多少冰,有助于评估对自然资源的潜在影响。

    但是,从外太空观测地球时,引力视图会有些不清楚。虽然传统的重力仪已经非常先进,但在试图通过分辨来自地球的微弱引力信号来测量不同区域重力细微变化时,依然显得的力不从心。

    然而,这种经过改进的新型量子加速度计将是同类产品中第一款利用量子物理学原理增强其性能的设备。该设备将使科学家们能够以“更高分辨率”看到地球的完整重力图。

    CARIOQA-PMP 项目协调员Christine Fallet 说:“传统的重力计或经典的静电加速度计在灵敏度和精度方面存在一些限制。虽然较小或更微妙的特征可能无法捕捉到足够的细节或完全丢失,但它还是提供给我们能够探测到来自地球的主要洋流信息的能力。这对于精确的地球监测和研究由细微变化(如少量冰融化或轻微地下水消耗)引起的微弱重力变化来说是不满足要求的。

    CARIOQA项目的目标是开发突破性的量子空间加速度计技术,以改变基于卫星的地球科学。这些进步将在监测气候变化、支持全球制定减缓和适应性战略方面的努力中发挥关键作用。

    新的CARIOQA量子技术仍在开发中,该团队采用了一种称为冷原子干涉测量法(CAI)的技术。CAI依靠量子力学原理来检查和利用原子在极低温度下的波状行为。

    当原子冷却到接近绝对零度时,它们的运动变得非常缓慢,从而可以使用激光对它们进行极其精确的测量。“当原子被冷却时,”Fallet表示,“可以利用原子的波状特性来产生干涉状态(类似于水波重叠的涟漪)。通过分析这些模式,我们可以非常精确地测量原子的加速度。

    冷原子干涉测量技术避免了旧系统的一些问题,随着时间的推移,这种测量方式可以提供更清晰、更可靠的数据。在测量重力方面,CAI就像从模糊的老式电视升级到清晰的高清屏幕。这项技术将使我们对地球上正在发生的变化有更加清晰的了解。

    该项目分为两个平行部分:CARIOQA-PMP(“探路者任务准备”专注于开发在未来十年内用于太空探索的量子加速度测量技术。该项目将为量子探路者任务奠定基础,CARIOQA-PHA 将继续努力证明量子空间重力探路者任务的可行性,旨在使欧盟能够在太空中部署量子重力计和加速度计。

    “这项任务旨在为地球观测工作提供一个强大的工具。这是欧盟确立其在量子空间技术领域引导者地位的关键一步。CARIOQA的成功可能会使欧洲在全球应对气候变化的努力中处于领先地位,同时也证明了量子技术在应对我们这个时代最紧迫的挑战时所展现出的强大力量,“Fallet说。

    CARIOQA是一个汇集了所有关键合作伙伴的联盟,包括法国航天局(Centre National d'etudes Spatiales – CNES)、德国航空航天中心 (Deutsches Zentrum für Luft- und Raumfahrt e.V. – DLR)、法德工业集团(法国和德国的空中客车防务和航天公司(ADS-F、ADS-G)、EXAIL、TELETEL、LEONARDO、GMV)、欧洲的实验室和大学(LUH、SYRTE、LP2N、LCAR、ONERA、FORTH、 TUM、POLIMI、DTU)以及业内最具影响力的专家(FORTH/PRAXI、Groupe GAC)。

相关报告
  • 《原子干涉量子传感器体积巨大,但密歇根大学的物理学家设计出一种将其小型化的方法》

    • 编译者:张宇
    • 发布时间:2024-10-20
    • 原子干涉仪是一种量子传感器,它利用原子的波粒二象性来以极高的精度测量重力、加速度和旋转。目前的原子干涉仪大多是大型仪器,占用建筑物,并需要高达数十米的塔架。 近日,密歇根大学的物理学家们已经开发出一种量子旋转传感器的设计,其核心尺寸肉眼几乎难以察觉。 据主要作者、密歇根大学博士生 Bineet Dash 称,这种概念验证设计可能有助于将基于原子干涉仪的量子传感器从实验室推向世界。 Dash说,科学家们可以使用原子干涉仪进行各种任务,从不断寻找引力波引起的宇宙结构中的微小涟漪,到了解南极洲冰盖融化引起的地球重力的微小局部变化。但由于其的尺寸庞大,原子干涉仪通常局限于实验室环境。目前,最灵敏的原子干涉仪使用建筑物内的高塔将原子束射出数十米,以收集信息。 由 Dash 和密歇根大学的物理学家 Georg Raithel 的实验室开发的新设计使用了一种特殊的激光束,可以在风车形的几何结构中捕获原子,这种结构可以从30微米的半径(小于人类头发的直径)扩展到大约10倍大,约300微米。研究人员的设计发表在《AVS Quantum Science》期刊上。 “这种干涉仪并不是对其他地方开发的现有设计的增量改进,”Dash 说。“这是基于我们小组在 2021 年提出的一种完全不同的方法。” 目前,研究人员经常使用基于激光波干涉的干涉仪。Dash 说,在天体物理学中,这种光学干涉仪被用来探测引力波。在惯性导航中,光学干涉仪用于测量飞机、轮船和卫星的旋转。 “人们常说已经有利用光工作的传感器了。为什么我们还需要开发一种使用量子力学的传感器?“Dash 说。“其中一个主要的动机是,在相同的条件下,原子干涉仪的灵敏度可能比光学干涉仪高好几个数量级。” 基于光干涉的旋转传感器使用所谓的萨格纳克效应(Sagnac effect)。法国物理学家乔治·萨格纳克(Georges Sagnac)发现光可以用来测量旋转:如果你将光发送到一个旋转的物体周围,然后再发送另一束与旋转方向相反的光束,两束光波就会重叠。但是这些光波会相互“干涉”,并开始显示出它们行进路径的差异。这种差异可以用来测量旋转速度。 原子干涉旋转传感器基于相同的概念。根据量子力学,原子是粒子,但它们也具有波的特性。根据 Dash 的说法,因为它们的波长比光的波长小得多,这使得它们能够比光干涉仪进行更准确、更敏感的旋转测量。 但是Dash说,除了体积庞大之外,大多数现有原子干涉仪的工作原理也给它们在实验室外的使用带来了问题。将原子通过激光脉冲以不同的路径被射入实验室塔内的真空中,一个原子的路径比另一个原子的路径更高,然后它们最终都到达塔的底部,它们到达底部的时间差提供了背景加速度的信息。 当原子被释放到自由空间时,它们可能会分散,一旦分散,信息就会丢失。在某个时刻,原子会分散到足以丢失所有信息。尽管原子流是一起发射的,但许多原子并没有重新汇合,这会导致更多的信息丢失。 2021 年,身为学生的Dash在Raithel实验室采用“光晶格”的概念来尝试缩小原子干涉仪的尺寸。当两束方向相反的激光束在同一条路径上交叉时,就会产生光格,进而产生光网格。Dash说,在适当的条件下,原子可以被限制在光格的最小单位中,就像鸡蛋放在鸡蛋盒里一样。光晶格能够使原子移动受限,并允许实验人员将原子引导到预定的路径上,这些路径能够确保它们一定会重新汇合。 2021年的研究表明,激光参数的细微调整,能够使处于不同量子态的原子被分别困在单独的不同晶格中。这样研究人员使用激光脉冲同时作用于两个被困在不同晶格中的原子上就可以制造出量子叠加态。沿相反方向移动这两个晶格会在两束原子流之间产生滞后,然后可以使用它来读取背景加速度。 但是2021年的设计只让原子沿直线来回运动,这不适合用于旋转感应。 在目前的研究中,Raithel 的实验室设计了一种使用特殊激光束的方法,该激光束以角度模式而不是线性驻波模式发送原子。 “它看起来像一个风车,通过稍微改变激光频率,可以改变风车的速度,”Dash 说。“在预定的旋转时间之后,风车之间的旋转速度会出现滞后,我们可以利用这个滞后来计算背景旋转加速度。” Dash说,虽然该论文描述的使一个概念验证的设计,但Raithel实验室目前正在进行一项原型实验,该实验使用了玻色-爱因斯坦凝聚态低温原子源。 “目前的原子干涉仪非常适合基础物理学研究,但它们笨重、功耗高、占用空间大,而且由于它们的几何尺寸,导致它们在实际应用中并不实用,”Dash 说。“我们的研究是基于原型开发的,但这是一种非常通用的技术,可以适用于惯性导航和重力测绘等多种用途,以及基础物理学的研究中。
  • 《美国费米国家加速器实验室(Fermilab)主导开发新型量子传感器项目》

    • 编译者:李晓萌
    • 发布时间:2025-05-09
    • 近日,美国能源部费米国家加速器实验室(Fermilab)的研究人员,与计算机芯片制造商Diraq、威斯康星大学麦迪逊分校、芝加哥大学和曼彻斯特大学的科学家及工程师合作,提出开发一种由量子比特(称为硅自旋量子比特)构成的量子传感器,以探测超出标准模型的物理现象。Diraq是硅基量子计算技术的全球领导者,这对于Quandarum项目至关重要。 通过将多个自旋量子比特集成在芯片上形成传感器,研究人员希望使科学家能够探测到宇宙中最微弱的信号。这种传感器有可能用于探测轴子,一些科学家认为轴子是构成暗物质的假设粒子。 由费米实验室领导的Quandarum项目是美国能源部量子信息科学促进发现(QuantISED)计划资助的25个项目之一,总资助金额达7100万美元。QuantISED计划支持国家实验室和大学的创新研究,将量子技术应用于基础科学发现。 获得该奖项后,研究人员计划开发一种新型传感器,首次将两种专业技能相结合:硅中的自旋量子比特和用于暗物质探测器读出的低温“跳过”模数转换电路。 基于硅自旋的量子传感器可提供一个强大的平台来测试有关暗物质的理论,因为它能利用量子相互作用来提高灵敏度,并探索科学家对高能物理了解的极限。 这全都是关于自旋的 自旋量子比特将信息存储在电子自旋的方向上,这一特性是由量子力学所决定的。电子的自旋状态对其周围环境中的微弱电磁场极为敏感,这使得我们能够进行极为精确的测量。 “我们无法直接测量自旋的方向,但我们能够测量电荷的微小移动,因为移动的电荷会产生电场的变化,而这一变化是可以被测量的,”费米实验室工程师、项目负责人Adam Quinn表示。 然而,由于电子自旋非常微小、密集且对最轻微的干扰极为敏感,从自旋量子比特中提取信息相当困难。 “这种传感器的核心挑战在于读出,而成功的关键在于具备在最小噪声下读出信息的能力,”Quinn表示。 为了实现这一目标,Quinn和他的研究团队正在探索利用低温专用集成电路(ASICs)的高精度读出技术的新方法,这将与Diraq的量子比特传感器协同设计。ASICs的制造方式与如今为大多数电子设备提供动力的芯片相同。然而,它们将采用专门的设计和布局技术,以实现卓越性能,特别是在极端环境下,例如在低温腔体内。 费米实验室团队正在基于费米实验室此前在读出跳过电荷耦合器件(skipper CCDs)方面的工作进行研发。工程师们开发了跳过CCDs,通过克服噪声来提高读出精度。跳过器件利用一种称为“跳过”的动作,将电荷来回移动多次,从而在单个电子水平上实现更精确的测量。费米实验室团队计划将这一创新应用于量子比特的读出,通过几次迭代的芯片设计,使量子比特和读出电子设备更紧密地集成在一起。他们相信,这最终将导致一个低功耗、高灵敏度的探测器的诞生。 费米实验室多年来一直在为粒子物理实验开发新型读出芯片。如今,工程师和科学家们将运用一些相同的微电子电路类型,并将其应用于新型传感器的开发。 扩大规模 然而,生产所需的量子比特数量——可能达到数千个——将它们集成到硅芯片上,并使其正常工作并非易事。在制造过程中,每个量子比特必须几乎完全相同,并且性能要与其他量子比特相似。 Diraq公司是开发硅基自旋量子比特的全球领先者,它在大规模制造自旋量子比特方面具有优势。硅是首选材料,因为其生产工业基础设施已经非常成熟。 “除了量子计算,硅基自旋量子比特的固有特性和材料特性在大型量子感测阵列技术和粒子探测应用方面也具有重要意义,”Diraq公司的创始人兼首席执行官Andrew Dzurak表示。 “通过使用高精密制造工艺,我们希望实现质量可控的集成硅自旋量子比特的生产,达到经济高效且具有商业价值的规模。这项技术不仅有望成为大规模量子计算机的基础,还能成为大规模量子感测平台的基础,”他表示。 一步一个脚印 在接下来的五年里,目标是将自旋量子比特和跳过读出技术这两种技术结合到单个芯片上。然而,为了实现这一目标,他们将构建几个原型。 “我们首先将使用现有的芯片并将它们组合在一起,”奎因说。“我们预计这将是一个很好的概念验证,但性能不会很理想。然后,在接下来的几年里,我们将设计越来越好的专用集成电路(ASICs)来提高性能。 在Quandarum项目中,费米实验室和Diraq公司将与威斯康星大学麦迪逊分校、芝加哥大学和曼彻斯特大学的科学家携手合作,他们将负责开发算法并模拟物理现象的相互作用。所有参与机构都希望利用所开发的技术,实现Quandarum项目与他们正在进行的高能物理研究的互利共赢。 “该项目彰显了跨学科合作与创新的力量,有助于推动量子技术在基础科学领域的进步,”费米实验室微电子部门负责人Fahim说道。 “通过结合费米实验室在极端环境电子学和构建敏感大面积探测器方面的专业知识,以及Diraq公司在硅自旋量子比特方面的世界级能力,Quandarum项目将推动量子传感技术的发展,以应对我们宇宙中最深刻的奥秘之一,”Fahim表示。 Quandarum项目为期五年,获得全额资助。