《纤维素纳米材料在多尺度中观结构陶瓷的模板和成型中具有变革性和多才多艺的作用 》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2018-11-20
  • 探讨了纤维素纳米材料(CNMs)在制备多尺度介观结构陶瓷中所起的变革性和多才多艺的作用。CNMs通过利用自然资源获得优异的性能,革新了功能先进的材料概念和技术。其独特的化学和物理性质促使其开发成为一种增强剂、刺激反应工具和模板剂,主要用于生物和聚合物材料以及金属和陶瓷。CNMs可作为牺牲填料模板剂、表面修饰剂,并可帮助将宏观结构成型为大块样品。深入了解碳纳米管与陶瓷颗粒之间的协同相互作用机制,将它们组装成溶液和固体结构,是推进这一技术的关键,也是对合成和处理机制的预测理解,这些合成和处理机制涉及到形态学、加工和最终物理性能。对于功能陶瓷技术而言,CNMs潜在的易于处理和多功能性,与CNMs的性质和性能密切相关,将对目前的工艺水平产生重大影响。

    ——文章发布于2018年9月14日

相关报告
  • 《用功能陶瓷纳米容器修饰天然纤维材料》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-04-23
    • 这项名为“毛发表面工程:利用功能陶瓷纳米容器对源自生物的纤维材料进行改性”的研究是由Rawil Fakhrullin博士领导、俄罗斯科学基金会资助的一个项目。 我们将在携带多种有机成分的功能性无机陶瓷纳米容器的基础上,定向形成纳米结构层,对头发和其他天然纤维材料的表面进行修饰。天然材料具有低过敏性,使用舒适,但耐磨性较低,易变形和生物降解。 Rawil Fakhrullin博士,喀山联邦大学 Rawil Fakhrullin博士继续说:“使用功能化纳米材料对性能进行定向改性将极大地扩展天然纤维的应用领域。” 通过利用天然纤维材料和哺乳动物毛发的微观结构的相似性,研究人员努力开发一种通用的技术来改变生物起源纤维的表面,用于化妆品和纺织工业。 通过修改自然起源的纤维结构,它将有可能改变他们的审美属性(颜色、质地和味道),保护他们免受生物降解通过应用抗菌、抑菌和杀虫工作,以及增加面料的耐火性和无纺布材料基于羊毛、棉花、亚麻、丝绸。 Rawil Fakhrullin博士,喀山联邦大学 来自喀山联邦大学的生物营养学家将制定出修改人类头发的技术。通过使用这些技术,不仅可以改变头发的颜色、质地、厚度和香气。这也将是可行的,以保护头发的结构和下面的皮肤免受紫外线辐射。 此外,项目负责人认为,这些技术的使用将使开发基于功能性纳米容器的局部消炎药应用工具成为可能。 将这些药物应用于人类毛发下的皮肤受影响的区域,可以确保药物的长时间缓慢释放。基于类似原理工作的兽医制剂可用于家养动物和农场动物的毛皮药用。 在此过程中,研究人员还将研究无机纳米颗粒在生物纤维表面自组装的潜在过程,并为纤维材料的性能定向调整确定理想的参数。 各种来源的无机纳米粒子、生物高分子及其配合物将被用于研究纳米粒子在纤维表面的自组装模式。 Rawil Fakhrullin博士,喀山联邦大学
  • 《纳米材料软化和硬化行为本质问题有了最终答案》

    • 来源专题:纳米科技
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2017-04-01
    • 纳米材料软化和硬化行为本质问题有了最终答案2017/03/27 点击 54 次中国粉体网讯 日前,中国科学院金属研究所沈阳材料科学国家(联合)实验室卢柯研究组发现通过适当合金元素的晶界偏聚可以提高晶界稳定性,从而可以大幅度调控纳米金属的强度。该研究得到科技部国家重大科学研究计划和国家自然基金资助。该成果发表于2017年3月24日出版的Science(《科学》)。 金属材料的强度或硬度往往随晶粒尺寸减小而增加,遵循基于位错塞积变形机制的Hall-Petch关系,即强度的增加与晶粒尺寸的平方根成反比。而当晶粒尺寸低于某临界晶粒尺寸(通常为10-30纳米)时,金属的强度会偏离Hall-Petch关系,有些金属的强度不再升高甚至下降,这种纳米尺度下的软化现象通常归因于纳米金属中大量晶界的迁移。 卢柯研究组利用电解沉积方法制备出晶粒尺寸从30纳米到3.4纳米变化的一系列Ni-Mo合金样品,发现当晶粒尺寸小于10纳米时合金出现软化行为。通过适当温度的退火处理,他们利用晶界弛豫以及Mo原子在晶界上的偏聚,使材料硬度明显提高,最高可达11.35GPa。 这一结果表明,晶粒尺寸相同的纳米材料,其硬度可以通过调控晶界稳定性而大幅度地变化,既可硬化也可软化。该发现揭示了纳米材料中软化和硬化行为本质,澄清了过去三十多年来关于这一问题的争论。同时表明在纳米金属中硬度不仅依赖于晶粒尺寸,也受控于晶界稳定性。晶界稳定性可成为纳米材料中除晶粒尺寸之外的另一个性能调控维度。 纳米金属中的不同硬度变化源于不同的塑性变形机制。卢柯研究组与法国UNIROUEN及南京理工大学的合作者利用原子探针技术和高分辨率电子显微术发现,制备态纳米Ni-Mo样品中的软化行为是由于机械驱动的晶界迁移变形机制所致。而纳米Ni-Mo样品在退火过程中发生了晶界弛豫及溶质原子的晶界偏析,降低了晶界能,提高了晶界的稳定性,使晶界行为在外力作用下难以启动,塑性变形通过拓展不全位错的形核及运动来实现。由于位错形核应力与晶粒尺寸的倒数成正比,样品硬度随晶粒尺寸减小不降反升。极小晶粒尺寸纳米金属的硬化及软化行为充分展现了由晶界稳定性控制的微观变形机制转变。这一发现为设计及制备具有如超高硬度等优异性能的新型纳米金属材料提供了新思路。