《CELL,5月19日,Invasion Science and the Global Spread of SARS-CoV-2》

  • 来源专题:COVID-19科研动态监测
  • 编译者: xuwenwhlib
  • 发布时间:2020-05-20
  • Invasion Science and the Global Spread of SARS-CoV-2

    M.A. Nuñez A. Pauchard A. Ricciardi

    Published:May 19, 2020DOI:https://doi.org/10.1016/j.tree.2020.05.004

    Abstract

    Emerging infectious diseases like COVID19 are driven by ecological and socioeconomic factors, and their rapid spread and devastating impacts mirror those of invasive species. Collaborations between biomedical researchers and ecologists, heretofore rare, are vital to limiting future outbreaks. Enhancing the cross-disciplinary framework offered by invasion science could achieve this goal.

  • 原文来源:https://www.cell.com/trends/ecology-evolution/fulltext/S0169-5347(20)30134-8
相关报告
  • 《Science,5月4日,Site-specific glycan analysis of the SARS-CoV-2 spike》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-05-06
    • Site-specific glycan analysis of the SARS-CoV-2 spike Yasunori Watanabe1,2,3,*, Joel D. Allen1,*, Daniel Wrapp4, Jason S. McLellan4, Max Crispin1,† See all authors and affiliations Science 04 May 2020: eabb9983 DOI: 10.1126/science.abb9983 Abstract The emergence of the betacoronavirus, SARS-CoV-2, the causative agent of COVID-19, represents a significant threat to global human health. Vaccine development is focused on the principal target of the humoral immune response, the spike (S) glycoprotein, which mediates cell entry and membrane fusion. SARS-CoV-2 S gene encodes 22 N-linked glycan sequons per protomer, which likely play a role in protein folding and immune evasion. Here, using a site-specific mass spectrometric approach, we reveal the glycan structures on a recombinant SARS-CoV-2 S immunogen. This analysis enables mapping of the glycan-processing states across the trimeric viral spike. We show how SARS-CoV-2 S glycans differ from typical host glycan processing, which may have implications in viral pathobiology and vaccine design.
  • 《CELL,5月26日,A mouse model of SARS-CoV-2 infection and pathogenesis》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-05-27
    • A mouse model of SARS-CoV-2 infection and pathogenesis Shi-Hui Sun 7 Qi Chen 7 Hong-Jing Gu 7 Yu-Sen Zhou Cheng-Feng Qin You-Chun Wang 8 Show all authors Show footnotes Published:May 26, 2020DOI:https://doi.org/10.1016/j.chom.2020.05.020 Summary Since December 2019, a novel coronavirus SARS-CoV-2 has emerged and rapidly spread throughout the world, resulting in a global public health emergency. The lack of vaccine and antivirals has brought an urgent need for animal model. Human Angiotensin converting enzyme II (ACE2) has been identified as a functional receptor for SARS-CoV-2. In this study, we generated a mouse model expressing human ACE2 (hACE2) using CRISPR/Cas9 knock-in technology. Compared with wild-type C57BL/6 mice, both young and aged hACE2 mice sustained high viral loads in lung, trachea and brain upon intranasal infection. Although fatalities were not observed, interstitial pneumonia and elevated cytokines were seen in SARS-CoV-2 infected- aged hACE2 mice. Interestingly, intragastric inoculation of SARS-CoV-2 was evidenced to cause productive infection and lead to pulmonary pathological changes in hACE2 mice. Overall, this animal model described here provides a useful tool for studying SARS-CoV-2 transmission and pathogenesis, and evaluating COVID-19 vaccines and therapeutics.