《水生所发现甲基转移酶SMYD3调控机体低氧耐受的新功能》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2022-12-05
  •       氧气通过多种机制影响动物机体的生理活动。氧气供应不足(低氧)会导致机体细胞功能紊乱甚至凋亡。动物在演化历程中,发展出感知和适应氧变化的独特分子机制,其中,由低氧诱导因子(HIF)介导的低氧信号转导至关重要。在有氧的条件下,脯氨酸羟基化酶PHDs利用O2等作为辅因子羟基化修饰低氧诱导因子HIF-α,致使HIF-α被pVHL等形成的E3泛素连接酶复合体所识别,进而被蛋白酶体快速降解;而在低氧条件下,由于氧气的缺乏,使得脯氨酸羟基化酶PHDs的活性受到抑制,HIF-α不能发生羟基化修饰导致其泛素化降解途径被阻断,HIF-α得以积累,进入细胞核,与HIF-1β形成复合体,调控低氧下游基因的表达和机体的低氧胁迫响应。鉴定和解析低氧信号通路的调控因子,将帮助科学家探究机体低氧适应和低氧耐受的机制。  

      近日,中国科学院水生生物研究所肖武汉团队揭示了甲基转移酶SMYD3通过激活低氧信号通路,抑制机体低氧耐受能力的机制,而该抑制功能并不依赖SMYD3的甲基转移酶活性。  

      本研究中,过表达和敲除实验结果表明:SMYD3可以激活低氧信号通路,而该作用的发挥不依赖HIF-α最经典的调控模式——PHDs介导的羟基化修饰和pVHL介导的泛素化修饰。免疫共沉淀和免疫荧光实验的结果显示:SMYD3可以直接结合并稳定HIF-α,导致细胞核内的HIF-α增多,增强HIF-α下游基因的表达,但该作用不依赖SMYD3的甲基转移酶活性。

      从体外(in vitro)和在体(in vivo)两个方面,研究进一步揭示了SMYD3调控低氧信号通路的分子机制。在细胞水平,SMYD3通过激活低氧信号通路,诱导活性氧(ROS)积累,促进细胞凋亡。在个体水体,smyd3敲除的斑马鱼可以显著增强低氧耐受能力。

      该研揭示了SMYD3在机体低氧耐受中的生物学功能和作用机制,并为耐低氧鱼类新品种的培育提供了潜在的分子靶标。相关研究成果以Methyltransferase SMYD3 impairs hypoxia tolerance by augmenting hypoxia signaling independent of its enzymatic activity为题,在线发表在Journal of Biological Chemistry上。研究工作得到国家自然科学基金、中国科学院战略性先导科技专项、国家重点研发计划等的支持。

  • 原文来源:https://www.cas.cn/syky/202211/t20221124_4855717.shtml
相关报告
  • 《DNA甲基转移酶:作为有效抗癌药物抑制剂发现的新兴目标》

    • 来源专题:重大新药创制—研发动态
    • 编译者:杜慧
    • 发布时间:2019-11-01
    • DNA甲基转移酶(DNMT)是保守的胞嘧啶甲基化酶家族,在表观遗传调控中起关键作用。它们被认为是癌症表观遗传治疗的有希望的治疗靶标。因此,近年来,DNMT抑制剂(DNMTis)对异常DNA甲基化模式的可逆调节,引起了人们的极大兴趣。在这篇综述中,我们基于结构概述了DNMTs对不同癌症类型的治疗重要性,然后总结了最近研究的DNMTis及其抑制机制,重点介绍了使用计算方法开发具有特异性和/或选择性的DNMTis的最新进展。
  • 《 徐华强课题组与合作团队首次解析de novo DNA甲基转移酶和天然底物核小体的高分辨率结构》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-09-25
    • 中国科学院上海药物研究所徐华强课题组与美国温安洛研究所Peter Jones课题组、Karsten Melcher课题组于北京时间2020年9月23日在国际顶级期刊《NATURE》在线发表了题为“Structure of nucleosome-bound DNA methyltransferases DNMT3A and DNMT3B”的重要研究成果。研究团队利用Cryo-EM技术首次解析了de novo DNA甲基转移酶(DNMT3A2/DNMT3B3)和天然底物核小体的高分辨率结构,阐述了DNMT3A2/DNMT3B3与核小体的结合模式,提出了全基因组DNA甲基化的模型。   DNA甲基化可以改变染色质结构、DNA稳定性及DNA与蛋白质等相互作用,从而控制基因表达。DNA甲基化可随DNA的复制过程遗传给新生的子代DNA,是一种重要的表观遗传机制。在染色质环境中,DNA的甲基化要比在溶液中复杂得多,核小体作为遗传物质的组成单位,包裹在其外围的DNA更加难以被甲基化。然而,大多数核小体结合的de novo DNA甲基转移酶处于非激活状态。de novo DNA 甲基化转移酶3A和3B催化的CpG甲基化对哺乳动物的发育和细胞分化至关重要,并且常常与癌症的发生密切相关。通过对大量正常组织(GTEx数据库)和癌症组织(TCGA数据库)中不同亚型DNMT的表达分析,本研究以人类癌症中主要的两种DNMT亚型DNMT3A2和DNMT3B3与核小体核的相互作用为重点。目前,DNMT3A催化结构域和DNMT3L类催化结构域以及其与游离DNA的晶体结构已经解析,然而由于其局限性, DNMT与其天然底物核小体的相互作用机制并未得到阐述。   中国科学院上海药物研究所徐华强课题组联合美国温安洛研究所Peter Jones课题组、Karsten Melcher课题组,长期致力于研究DNA 甲基化对基因表达调控的重要影响及其对人类癌症发生发展的广泛参与。为了揭示DNMT3A2/3B3与核小体的相互作用并了解染色体上DNA甲基化,通过四年多的不懈努力,团队利用冷冻电镜技术成功解析DNMT3A2/3B3和核小体复合物近原子分辨率的冷冻电镜结构。该结构显示,异源四聚体复合物(3B3-3A2-3A2-3B3)与分离的DNMT3A催化结构域和DNMT3L类催化结构域复合物非常相似,但是却非对称地和核小体相互作用。DNMT3B3类催化结构域之一锚定在核小体的酸性补丁(acidic patch)区域,其作用核心区域为DNMT3B3 740位和743位的精氨酸指(Arginine finger)。核小体酸性补丁区域与多种核小体结合蛋白都有至关重要的相互作用。然而,DNMT3A2催化结构域并不与核小体核心区域相互作用,而是随着DNA的路径,与一端的连接DNA(linker DNA)相互作用并催化其CpG甲基化。尽管DNMT3家族蛋白具有高度的保守性,通过DNA结合的DNMT3A2和核小体核心区域结合的DNMT3B3的结构对比,揭示了目标识别区域(TRD)结构域的开关功能。在所有具有催化活性的DNMT3亚型中,都含有对目标DNA作用至关重要的TRD结构域,虽然其在空间上阻断了催化结构域与核小体核心区域相互作用,但是增强了DNA的结合能力。 为了验证酸性补丁相互作用对核小体募集的重要性,研究团队对精氨酸指(R740和R743)进行了突变分析,并以远离酸性补丁区域的氨基酸(K745和R749)作为对照。体外相互作用实验(ALPHA Screen)显示,相互作用核心区域740和743精氨酸指相反电荷的突变显著减弱了DNMT3A2/3B3与核小体的相互作用,而非核心区域或者相同电荷的突变则如预期,结合能力没有显著变化。细胞内染色质结合能力实验(chromatin association assay)也证实与酸性补丁相互作用740和743精氨酸指的突变导致与染色质的结合显着降低。DNA甲基化阵列(Infinium MethylationEPIC BeadChip)同样证实了DNMT3B3与核小体酸性补丁之间的相互作用对于体内DNA甲基化重建的重要性。突变体DNMT3B3恢复DNA甲基化的能力和其与染色质的结合能力密切相关。作为对照的K745和R749突变,甲基化恢复水平几乎与野生型DNMT3B3一样。相反,显着降低与染色质结合的R740E和R743E突变,甲基化恢复效率低得多。有限的微球菌核酸酶消化实验(MNase digestion)进一步证实了存在DNMT复合物的情况下,核小体的任一侧都显着增加了约10 碱基对的保护区域。这些数据强烈支持DNMT复合物的类催化结构域与酸性补丁相互作用对于核小体募集和DNA甲基化的重要性,并且与DNA的结合并不依赖于酶的活性位点CpG。 总之,DNMT3A2/3B3与核小体复合物的结构以及功能分析揭示了DNMT3B3类催化结构域出乎意料的核小体靶向功能,将DNMT3A2/3B3催化结构域定位在核小体连接DNA区域,这对于全基因组DNA甲基化非常重要。通过DNMT类催化结构域和催化结构域将DNMT核心核小体靶向和CpG甲基化分离,可以将DNMT3复合物募集到难以接近的核小体附近,同时将CpG甲基化靶向连接DNA区域。这表明,在体内将DNA甲基化传播至核小体DNA需要核小体核的重塑,例如通过DNA复制、转录或其他核小体重塑事件。   该项工作由2016年作为药物所和温安洛的交流生徐廷海(药物所2017届博士毕业生,目前为美国温安洛研究所Peter Jones组、Karsten Melcher组共同博士后)在药物所导师徐华强和温安洛Peter Jones、Karsten Melcher的指导下开展,徐廷海为本文的唯一第一作者。参与此项工作的还有温安洛研究所Minmin Liu博士,X. Edward Zhou博士,Gongpu Zhao博士以及南加州大学的Gangning Liang教授。中国科学院上海药物所徐华强与美国温安洛研究所Peter Jones,Karsten Melcher为本文的共同通讯作者。