《从人类干细胞衍生内皮谱系的策略。》

  • 来源专题:实验室生物安全
  • 编译者: 张虎
  • 发布时间:2019-07-11
  • 越来越多的证据表明,组织工程化构建体的血管前期可显着提高其移植后的存活率和植入率。 内皮细胞(EC)是血管系统的基本组成部分,对于血管前期的整个过程是必不可少的。 但是,EC的来源仍然存在问题。 最近的研究证实,在组织工程的EC的衍生中可以使用多种方法,例如直接分离自体EC,体细胞的重编程,以及类型学中干细胞的诱导分化。

  • 原文来源:https://www.ncbi.nlm.nih.gov/pubmed/31286997
相关报告
  • 《Science | 维生素A决定细胞谱系可塑性以协调干细胞谱系的选择》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-03-08
    • 2024年3月8日,洛克菲勒大学Elaine Fuchs教授和Matthew T. Tierney博士后等人,在国际顶尖学术期刊Science上发表了题为Vitamin A resolves lineage plasticity to orchestrate stem cell lineage choices的研究论文。 细胞谱系可塑性是指新的和先前谱系的细胞标识转录因子的双重表达,并且是赋予干细胞命运灵活性的伤口诱导应激途径的典型特征。在健康组织中,干细胞最终要么返回其先前由环境定义的轨迹,要么在进入不同微环境时经历命运变化。了解细胞谱系可塑性是如何解决的很重要,因为使其持续的条件可能导致慢性伤口状态或肿瘤发生。 该研究发现,全反式维A酸(atRA)作为一种维生素A代谢物,对于恢复它们在培养中的生理身份至关重要。他们还发现atRA使培养的毛囊干细胞能够与WNT和BMP信号合作,有效地协调形成毛囊所需的不同谱系。此外,遗传、饮食和局部干预均证实了atRA在平衡干细胞对表皮修复和毛发再生中的贡献方面的功效。最重要的是,他们证明了atRA水平必须下降,毛囊干细胞才能参与伤口修复。这些研究结果提供了关于维持干细胞谱系特异性的机制的新见解,并为利用atRA平衡干细胞在表皮修复和毛发再生中的作用提供了潜在途径。 擦伤时,皮肤干细胞会紧急出击,生长新的表皮来覆盖伤口。但是,最终修复伤口的干细胞中只有一部分通常专门用于补充保护身体的表皮。其他的是前毛囊干细胞,通常促进毛发生长,但会响应更紧急的需求,将自己变成表皮干细胞,加强本地的修复工作。为了做到这一点,这些毛囊干细胞首先进入一种柔韧的状态,即谱系可塑性状态。在这种状态下,它们暂时表达了两种类型干细胞的转录因子,即毛发和表皮。为了更好地理解人体如何调节这一过程,Elaine Fuchs教授和她的团队在模拟创伤状态下,筛选小分子化合物,以确定它们解决培养小鼠毛囊干细胞谱系可塑性的能力。他们惊讶地发现,维生素A的生物活性形式——全反式维A酸(atRA)——对这些干细胞退出谱系可塑性,然后被引导分化为毛发细胞或表皮细胞在体外起到了至关重要的作用。atRA是维生素A代谢产物,对恢复小鼠毛囊干细胞在培养中的生理特性至关重要。这些相同的效应在小鼠皮肤内也得以重现,在那里atRA作为干细胞微环境的一个组成部分被局部产生,并且需要维持谱系特异性。通过将转录组和染色质组学数据与维A酸活化的核维A酸受体-DNA相互作用相结合,他们确定了影响这一结果的靶标。 有趣的是,维A酸并不是独自发挥作用的:atRA使培养的毛囊干细胞能够与WNT(Wingless相关整合位点)和BMP(骨形成蛋白)信号共同有效地编排形成毛囊所需的不同谱系。这种培养平台准确地模拟了干细胞特有的一系列行为,包括从静止到活跃的自我更新的转变,以及它们沿着有序路线定向到分化命运。最后,他们利用实验室小鼠作为模型系统研究atRA在伤口愈合过程中的影响,他们发现遗传、饮食和局部干预都证实了atRA在平衡干细胞对表皮修复和毛发再生的贡献中的作用。然而,事情并不止于此。他们还证明了atRA的可用性与谱系可塑性呈负相关,在修复早期短暂减少以允许干细胞在伤口床中进行“身份转换”,然后在屏障重新形成后恢复以促进毛发再生。
  • 《应对超级细菌新策略,阻断细菌与细胞的结合》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:黄翠
    • 发布时间:2017-06-20
    • 哺乳动物肠道栖息着万亿细菌,这些细菌中有一些属于无害类型,也有一些属于潜在的致病菌。在肠道内持续生存对这些细菌来说也是一个不小的挑战,因为肠道的一波又一波蠕动会把内容物不断驱赶出去,细菌如何避免被驱赶是需要生存技巧的。科学界对致病菌如何粘附宿主细胞的过程早就有比较全面的研究,但不知道肠道细菌是如何共生定居于肠道粘膜表面。 最新《自然》在线发表 Spaulding 等的论文,研究了可导致泌尿系统感染如膀胱炎的肠道大肠杆菌如何在小肠内生存,大肠杆菌在肠道生存需要借助自身合成的一种丝状蛋白复合物 pili,这种蛋白能协助细菌粘附肠道壁。作者还确定了一种糖衍生物能破坏这些粘附过程。来自粪便的大肠杆菌能入侵尿道并导致尿路感染,预防大肠杆菌在泌尿系统定居是治疗泌尿系感染的一种策略。过去研究发现,pili 是细菌定居于膀胱和肾脏等感染部位的必须成分。伴侣蛋白 - 推进蛋白途径类 (CUP) 菌毛广泛存在于大肠杆菌等细菌。研究人员推测 CUP 菌毛可能参与肠道定居。为验证这一假说,作者建立突变缺失 9 种 CUP 菌毛基因的大肠杆菌,并测试这些细菌在泌尿系统定居的能力。结果发现,如果将 1 型和 F17 CUP 菌毛基因删除,细菌的感染能力显著降低。1 型菌毛是膀胱内感染的关键,但是这种基因对大肠杆菌在肠道内的定居能力的作用是最新发现。而 F17 样菌毛只对肠道定居有贡献,缺乏这种基因的细菌仍然能感染膀胱。 菌毛作为宿主 - 病原体结合的桥梁是粘附蛋白尖端碳水化合物通过共价键连接到宿主细胞膜上的蛋白质或脂质上。通过对 1 型和 F17 样菌毛进行纯化,研究人员证明每个菌毛能结合特定的宿主蛋白聚糖,其中 1 型能与包含 d 甘露糖的 N 型聚糖结合,F17 样菌毛则结合 O 型聚糖。这种结合特征让大肠杆菌能分别定居在肠道内不同部位,保证了肠道内大肠杆菌的多样化。研究人员还发现,从一组女性反复发作的女性尿路感染患者体内分离的大肠杆菌,几乎所有都能制造 F17 样菌毛,结果支持这些菌毛和复发性尿路的关系。 为研究 1 型菌毛如何协助大肠杆菌结合在肠道细胞上,Spaulding 观察了一种化合物 M4284 的作用,这是一个甘露糖苷小分子,结合 1 型菌毛的能力是 d 甘露糖的 10 万倍。研究发现,小鼠口服 M4284 能显著减少肠道内大肠杆菌的数量。提示 M4284 能竞争阻断细菌 d 甘露糖与肠道上皮细胞的结合,使大肠杆菌无法有效结合在肠道上皮细胞,从而很容易被肠道蠕动清除体外。 能不能用这种小分子化合物作为泌尿系感染的治疗药物?进一步研究发现,M4284 确实具有帮助小鼠清除膀胱的大肠杆菌,这种作用是通过直接干扰细菌通过 1 型菌毛和宿主膀胱上皮细胞之间的结合。推测 M4284 从肠道吸收入血,进入膀胱发挥作用。另外一种可能是通过减少肠道内大肠杆菌的数量有利于减少泌尿道感染发生率。 超级耐药细菌是当今医学领域面临的重大挑战,抗生素的开发总是无法跟上耐药菌的出现。Spaulding 等的发现给我们提供了一种潜在的不依赖抗生素的减少细菌感染的策略,这非常值得鼓励。抑制细菌和宿主细胞的结合可能是未来对付恶劣细菌感染,解决耐药菌的重要理想手段。 长期的医疗实践告诉我们,抗生素不仅杀死致病菌,也会导致肠道正常菌群被误伤。正常肠道菌群给我们提供一个天然屏障,避免致病菌的入侵。但这种屏障可以因为耐药菌过度增殖破坏。但是通过阻断细菌和宿主细胞结合的小分子如 M4284 将不会对正常菌群产生干扰。Spaulding 研究也证明使用 M4284 对肠道菌群没有产生明显影响。研究病原体致病机制的同时,也应该对正常菌群如何维持进行研究,只有通过深入全面研究,才能在摧毁敌对分子的同时保护好周围吃瓜的群众。