《中国科学院海洋研究所研究提出可重复利用的金属表面强化粉末扩渗剂》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2022-05-10
  • 近日,中国科学院海洋研究所黄彦良课题组对金属表面强化常见的粉末扩渗技术进行了改良,提出了可重复利用的粉末扩渗剂,极大提升了粉末扩渗技术的安全、便捷、绿色环保和资源节约。相关研究成果在国际学术期刊Journal of Cleaner Production发表。

    镁合金是一种最轻的金属结构材料,其应用能明显降低结构件重量及交通工具能源消耗。但镁合金耐蚀性差,为促进镁合金在强腐蚀海洋环境中的应用,需对其进行表面强化。

    粉末扩渗是一种常见的金属表面强化方法,通常采用金属粉末作为渗剂,使金属粉末中的金属元素扩散渗透进入金属基体表面,从而形成耐蚀金属涂层。传统粉末扩渗过程需将待渗件和金属粉末置于密闭装置、惰性气氛或真空气氛中,在一定温度下保温一段时间继而形成金属涂层。但该方法有其局限性:密闭状态下如若扩渗体系中有气体生成,可能会使密闭容器炸裂;真空和惰性气氛提升了对热处理设备的要求,增加了能源和资源消耗;大规模生产时采用纯金属粉末作为渗剂,如操作不规范且通风不良,金属粉末在密闭空间内弥散,可能引发燃爆。

    海洋研究所黄彦良课题组针对粉末扩渗表面处理技术持续性开展研究,成功去除了粉末扩渗对于密闭、真空或惰性气氛的要求,提出采用氯化物作为催渗剂,即可在大气气氛下开展表面强化。继而,团队又首次提出不采用纯金属粉末作为镁合金表面渗剂,仅采用氧化物作为扩渗金属元素的来源,极大提升了粉末扩渗的安全性。氧化物中的金属离子已经处于氧化态和稳定态,与遇火即燃的铝粉和锌粉等金属粉末区别巨大,运输及保存便利,且价格更为低廉。

    近期,团队研究提出了可重复利用的粉末扩渗剂。该粉末扩渗剂以安全环保的碱式氯化物为基,其可利用时长相较传统粉末扩渗剂明显提升。传统粉末扩渗剂由于含有金属粉末,而金属粉末极易氧化,仅仅一个扩渗周期后即须弃置。而本研究提出的粉末扩渗剂可在多个扩渗周期中反复使用,无需中途弃置,显著减少了固体废弃物,促进了绿色环保和资源节约。

    海洋研究所路东柱助理研究员为文章第一作者和通讯作者。研究得到了侯保荣研究员、黄彦良研究员等的指导,和山东省重点研发计划、青岛市科技计划、南通市科技计划等项目的资助。    

    相关文章及链接:

    Dongzhu Lu, Quantong Jiang, Xiumin Ma, Liang Fan, Yanliang Huang, Baorong Hou, Zinc chloride hydroxide - A recyclable diffusion source for fabrication of zinc rich coatings on magnesium alloys, Journal of Cleaner Production. 344 (2022) 131066. https://doi.org/10.1016/j.jclepro.2022.131066.

    Dongzhu Lu, Quantong Jiang, Xiumin Ma, Kuikui Wang, Xiaole Fu, Yanliang Huang, Baorong Hou, Characterization of Zn in a polycrystalline MgO film, Materials Characterization. 173 (2021) 110955. https://doi.org/10.1016/j.matchar.2021.110955.

    Dongzhu Lu, Xiumin Ma, Yanliang Huang, Fubin Ma, Jizhou Duan, Baorong Hou, Surface Alloying of a Magnesium Alloy with Zinc Oxide by Taking Advantage of the Permeability of the Magnesium Oxide Film, The Journal of Physical Chemistry C. 123 (2019) 24461–24468. https://doi.org/10.1021/acs.jpcc.9b03839.

    Dongzhu Lu, Yanliang Huang, Quantong Jiang, Meng Zheng, Jizhou Duan, Baorong Hou, An approach to fabricating protective coatings on a magnesium alloy utilising alumina, Surface and Coatings Technology. 367 (2019) 336–340. https://doi.org/10.1016/j.surfcoat.2019.04.016.

  • 原文来源:http://www.qdio.cas.cn/2019Ver/News/kyjz/202205/t20220509_6445371.html
相关报告
  • 《中国科学院过程所:魔法粉末“聚复盾”助力军民融合》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-11-01
    • 你在中国科学院工作这么久了,都为国家做了什么贡献啊?” 中国科学院过程工程所研究员李国良的父亲是一位退伍军人,父亲第一次这么问他时,他还不知如何回答。直到最近,他似乎有了一些答案。 在不久前落幕的第四届军民融合发展高技术装备成果展上,李国良研究团队为山东格物新材料科技有限公司(“山东格物”)研发的一种“魔法粉末”——“聚复盾”吸睛无数。作为一种智能化的纳米涂层材料添加剂,它在金属涂层破损后能进行自我修复,继续为飞机、轮船等金属表面提供腐蚀防护功能。 截至展览落幕,“聚复盾”与多家企业签约——标志着千呼万唤的自修复材料正式实现商品化,走进国民经济主战场。 就像一种“活着”的材料 伤口会慢慢愈合——这是生物得天独厚的自我修复能力。如果人工合成的防护涂层材料也有这样的本事,那将免去多少麻烦?这个看似天马行空的想法,是国际材料学界探索多年,多方角逐的前沿性课题。 “2011年到2014年期间,我在德国马普胶体与界面所做博士后,接触到了自修复纳米材料科学前沿思想。”李国良对《中国科学报》记者说,多年来,这个领域的基础学术论文发表了很多篇,但可以工业化、商业化的可修复材料,仍是很多科学家尚未实现的梦想。 2015年,李国良经由“相关人才计划”加入中国科学院过程所,他决定抛开前人思路,以自己的方式重新设计实验路线。此前十多年的纳米高分子材料研究经验积累,给了他新的灵感。 他设计了一种新的制备技术,在腐蚀防护涂层材料里加入了一些外援型智能化纳米微球。在材料发生裂纹或机械损伤后,纳米微球就会感知到环境变化,并及时向破损表面释放修复剂,继续保持防护功效。 这种智能化的感知修复能力,是“聚复盾”的最大特色,也是具有我国自主知识产权的创新技术。 “聚复盾”不仅可以延长金属材料机体的使用寿命和维护周期,有效降低因腐蚀造成的事故发生率,而且相比传统涂层材料中用来防腐蚀的有毒物质六价铬盐,更加绿色、更加安全。因此在海洋工程、现代交通运输、机械设备、能源工业、航空航天等诸多领域,都有它大展身手的空间。 科学家与企业家携手跨越“死亡谷” 2016年,在中国科学院过程所科技开发处的引荐下,李国良研究团队开始了和山东格物的合作。“最开始我也有些忐忑,因为常常听人说:‘科技成果转化是个死亡谷’。”李国良半开玩笑半认真地说。 科学技术从走出实验室,到实现商品化之间,有一个最关键的薄弱地带——“工程化放大,实现量产”。这也是大家所说的“死亡谷”。 为什么呢?李国良解释:“实验室瓶瓶罐罐中做出来的结果,放在工厂的大设备里往往很难重复,需要多次的工程试车及工程化研发。”“要实现成果顺利转化的目标,就要从源头上设计,以符合简便化、稳定化、规模化的技术要求。” 在合作中,李国良和企业渐渐有了默契:“企业理解我们要在不断验证中优化方法和结果,我们也尽量限制自己工程化放大中的尝试次数,为企业节省资金和时间。” “我们是凭着科学家的报国情怀和企业家的实干精神,携手跨越了这次科技转化的死亡谷。”山东格物董事长徐连春说。 产学研情缘一线牵 科学家和企业家之间,天然存在信息不对称。一边是“养在深闺人未识”的先进实验室成果,一边是“不惜千金求良马”的高新企业,他们之间的缘分,还须有人牵红线。 “我们所跟北京很多孵化器有合作。”中国科学院过程工程研究所科技开发处处长张凯对《中国科学报》记者说,“‘聚复盾’的成功转化,是我们科技开发处牵线北京霄图科技孵化器实现的。未来,我们也会继续为其他科研人员的创新成果寻找应用场景和转化机会。” 张凯表示,中国科学院过程所数十年来一直为工业服务。近年来,他们引进了很多像李国良这样的优秀研究人员,为他们提供舞台,去做一些跟在国外实验室里发文章不同的事情。 中国科学院过程所一直承担了大量的企业横向课题,跟众多民营企业保持着合作关系。“在这届军民融合成果展上,山东格物作为一个非常年轻的公司,依托我们中国科学院过程所研发的“聚复盾”在层层严格筛选中突围而出。这给了我们更多自信,为支撑化学材料过程工业创新升级,助力军民融合深度发展不断做出新的贡献。”张凯说。 前不久,李国良研究团队又在《德国应用化学》上发表了一项研究成果,通过模拟肌联蛋白修复肌肉损伤修复的机制,合成出具有超韧性和高拉伸强度的自修复薄膜新材料。 “由于两位同行审稿人的积极肯定,此项成果评价为VIP论文,只有不到5%的文章得到了如此正面的评价。”期刊编辑在给李国良的信中如此写道。 “不同于外援型修复技术,这项全新的本征型修复技术已经申请了国家专利。”李国良说,“希望不久的将来能再次实现成果转化,为科技服务国民经济再多尽一份力量。”
  • 《中国科学院海洋研究所研究团队提出深度学习求解偏微分方程新方法》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:熊萍
    • 发布时间:2025-01-12
    • 近日,中国科学院海洋研究所李晓峰研究团队基于深度学习技术,提出了一种高效求解海洋动力学偏微分方程(PDE)的新方法,并成功应用于描述海洋内孤立波的KdV方程组求解。 本研究改进了物理信息神经网络(PINN),引入径向基函数(RBF)代替传统神经网络,提出了PIRBF模型。针对孤立波的强非线性特性,研究团队设计了渐进式学习策略,有效抑制了训练中的误差增长,大幅提升了模型精度和收敛效率,可精准模拟多种形式的孤立波解,包括孤立波解、conidal解和dinodal解,为海洋动力学PDE的高效求解提供了新思路。 该研究的核心亮点在于模型通过自监督学习,仅依赖PDE及初始条件,无需传统数值模型结果作为训练基准,直接利用深度学习技术求解。该方法在求解KdV及其强迫方程(如fKdV方程)时更加灵活,仅需调整偏微分项即可,展现出卓越的精度与效率。同样方法适用于求解薛定谔和Burgers等复杂PDE。模型训练完成后,可在数秒内生成高精度结果,大幅缩短计算时间。研究团队表示,这一技术的成功应用展现了物理驱动深度学习在海洋动力学PDE求解中的广阔前景。 本论文第一作者为李晓峰研究员,第二、第三作者为博士研究生王浩宇和杨艺,通信作者为张旭东副研究员。研究工作得到了中国科学院战略重点研究计划及国家自然科学基金项目等资助。 论文信息: X. Li,H. Wang,Y. Yang,X. Zhang,Deep Learning-Based Solution for the KdV-family Governing Equations of Ocean Internal Waves. Ocean Modelling,102493 (2024).