《我科学家制备出 强发光方向性量子点材料》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2022-03-31
  • 记者3月28日从中国科学技术大学获悉,该校中国科学院微观磁共振重点实验室杜江峰院士、樊逢佳教授等人与其他科研人员合作,在量子点合成过程中引入晶格应力,调控量子点的能级结构,获得了具有强发光方向性的量子点材料,此材料应用在量子点发光二极管(QLED)中有望大幅提升器件的发光效率。这一研究成果日前发表在《科学进展》杂志上。

      外量子效率(EQE)是QLED器件性能的一个重要评价指标,因此一直是国内外相关研究关注的重点。然而随着研究的推进,器件的内量子效率已经趋于极限,这时若要进一步提升EQE须从外耦合效率角度入手,即提升器件的发光效率。在提升外耦合效率方面,外加光栅或散射结构的方式会增加额外的成本,并带来诸如角度色差等问题。基于此,不增加额外的结构而使用具有方向性的发光材料,被认为是一种更为可行的解决方案。

      然而,QLED中使用的量子点材料并不具有天然的发光偏振,针对这一点,研究团队经过理论计算和实验设计,在核—壳量子点制备过程中引入不对称应力,该应力成功调制了量子点的能级结构,使量子点的最低激发态变为由重空穴主导的面内偏振能级。随后,他们使用背焦面成像等手段确认了此量子点材料的发光偏振,88%的面内偏振占比使该材料具有很强的发光方向性。

      发光方向性的提升可以将QLED的效率极限从30%提升到39%,为制造超高效率的QLED器件提供了一种新的解决思路。

相关报告
  • 《天生我材 未来显示材料:量子点》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-01-04
    • 量子点(quantum dot)是一种准零维的纳米材料,由少量的原子所构成。粗略地说,量子点三个维度的尺寸都在100纳米(nm)以下外观恰似一极小的点状物,其内部电子在各方向上的运动都受到局限,所以量子限域效应(quantum confinementeffect)特别显著。 发展历史 1.研究始于上世体 80 年代早期 2 个实验室的科学家 : 贝尔实验室的 Louis Brus 博士和前苏联 Yoffe 研究所的 Alexander Efros 和 Victor.I.Klimov 博士 2. 1993 年, Bawendi 教授领导的科研小组第一次合成出了大小均一的量子点。这一阶段的量子点纳米晶都是通过共沉淀法制备得来的。这种纳米晶由于尺寸分布不均匀,且表面缺陷较多,难以得到实际的应用。 3. 1994 年, Alivisatos 教授在 Nature 上发表了利用 CdSe 量子点构建发光二极管 (LED) 的文章 [3] ,开启了量子点在光电转换领域应用的密码。 4. 2003 年, Larson 等人在 Science 上报道了量子点的多光子发射性质,这样在荧光成像的时候可以完全避开生物组织的背景荧光 5. 2015 年深圳市金准生物医学工程有限公司的首个量子点标记技术的体外诊断试剂获 CFDA 批准。 六大特性 量子点的发射光谱可通过改变量子点的尺寸大小来控制 量子点具有很好的光稳定性 量子点具有宽的激发谱和窄的发射谱 量子点具有较大的斯托克斯位移 生物相容性好 子点的荧光寿命长 五大效应 1. 量子限域效应,由于量子点与电子的De Broglie波长、相干波长及激子Bohr半径可比拟,电子局限在纳米空间,电子输运受到限制,电子平均自由程很短,电子的局域性和相干性增强,将引起量子限域效应。 2. 量子尺寸效应,通过控制量子点的形状、结构和尺寸,就可以方便地调节其能隙宽度、激子束缚能的大小以及激子的能量蓝移等电子状态。 3. 表面效应,表面效应是指随着量子点的粒径减小,大部分原子位于量子点的表面,量子点的比表面积随粒径减小而增大。 4. 量子隧道效应,是基本的量子现象之一,即当微观粒子的总能量小于势垒高度时,该粒子仍能穿越这一势垒。 5. 库仑堵塞效应,当颗粒尺度到纳米级,体系电荷量子化,即充电放电过程是不连续的,前一个电子对后一个电子的库仑堵塞能Ec极大,导致一个单电子传输,电子不能集体传输,这种单电子输运行为称为库仑堵塞效应。 三大分类 一元量子点:C量子点Si量子点 二元量子点: 不含重金属的量子点 ZnO SiO2 等含重金属的量子点CdS CdSe CdTe PbS等 三元量子点: CdSexTe1-xCuInS2 CuInSe2等。 五大制备方法 应用领域 显示器件: 1. 光转换元件 2. 量子点电视 3. 量子点平板电脑 4. 量子点智能手机 照明器件: 量子点灯具有如下优点: ①接近自然光,不同尺寸的量子点材料会发出不同颜色的光,即我们可以通过改变量子点的尺寸来改变它的颜色,使光谱覆盖整个可见光范围。 ②无频闪,通常人眼能够感知到的频率达70 Hz(每秒钟闪70次),所以,量子点脉冲信号的频率高于70 Hz,人眼不会感觉到闪烁。 ③显色指数高,量子点的激发谱较宽,发射谱较窄所以多色量子点同时使用时不容易出现光谱交叠,因而量子点灯的显色指数较高,色彩更好,眼睛看起来更舒适。 生命科学与医学成像: 比如在肿瘤的诊断研究中,通过对水溶性量子点的表面进行适当的化学修饰,把对某种癌细胞具有特殊识别功能的靶向分子连接到量子点的表面。 这些表面具有识别分子的量子点就可以选择性的识别癌细胞并与之结合,通过荧光显微镜找到量子点,从而对癌细胞进行识别甚至跟踪。 生物体系荧光探针,与传统的荧光探针相比,纳米晶体的激光光谱宽,且连续分布,而发射光谱呈对称分布且宽度窄,颜色可调,即不同大小的纳米晶体能被单一波长的光激发而发出不同颜色的光,并且光化学稳定性高,不易分解。 新型能源器件: 量子点敏化太阳能电池:基于量子点的太阳能电池是当前的研究热门。 首先,由于量子点材料的多次电子激发效应以及很大的表面积,而且它们具有很宽的吸收光谱,因此相对于传统的太阳能电池而言有两倍以上的光电转换效率。 另外,对于同一种材料而言,不同尺寸的量子点能够吸收不同的波长,因此利用多种尺寸的量子点就能够覆盖整个太阳光波段,从而大大提高光能的利用率。 量子点显示产业链概述: 量子点显示产业链从上游到下游依次为上游量子点材料和阻隔膜、中游量子点膜和下游量子点电视。 量子点材料和阻隔膜供应商: 负责量子点材料和阻隔膜的设计和生产,代表性公司Nanosys和3M; 量子点膜公司: 完成量子点光学膜的涂布和复合工艺,代表性公司3M、激智科技。 终端电视厂(代工厂): 负责量子点电视的设计、生产和销售,代表性公司三星、TCL和海信。 展 望 未来更绿色、更低毒、兼容性更强、发光效率更高的量子点材料将成为量子点研究的主要方向。改变量子点材料的颗粒尺寸即可实现整个可见光谱区的覆盖,将不同尺寸的量子点按照一定比例混合,即可实现类似于太阳光的自然光色,得到较高的显色指数。量子点材料在提高色彩饱和度与显色指数的同时,还能降低显示与照明的功耗,必将成为下一代显示与照明用核心关键光转化材料。
  • 《石墨烯“打底” 我科学家制备出高速晶体管》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-10-31
    • 中国科学院金属研究所沈阳材料科学国家研究中心先进炭材料研究部科研人员首次制备出以肖特基结作为发射结的垂直结构晶体管“硅—石墨烯—锗晶体管”,成功将石墨烯基区晶体管的延迟时间缩短了1000倍以上,并将其截止频率由兆赫兹(MHz)提升至吉赫兹(GHz)领域,未来将有望在太赫兹(THz)领域的高速器件中应用。该研究成果近日在《自然·通讯》上在线发表。   1947年,第一个双极结型晶体管(BJT)诞生于贝尔实验室,引领了人类社会进入信息技术的新时代。过去的几十年里,提高BJT的工作频率一直是人们不懈的追求,异质结双极型晶体管(HBT)和热电子晶体管(HET)等高速器件相继被研究报道。然而,当需要进一步提高频率时,这些器件便遭遇到瓶颈:HBT的截止频率最终被基区渡越时间所限制,而HET则受限于无孔、低阻的超薄金属基区的制备难题。   近年来,石墨烯作为性能优异的二维材料备受关注,人们提出将石墨烯作为基区材料制备晶体管,其原子级厚度将消除基区渡越时间的限制,同时其超高的载流子迁移率也有助于实现高质量的低阻基区。   “目前已报道的石墨烯基区晶体管普遍采用隧穿发射结,然而隧穿发射结的势垒高度严重限制了该晶体管作为高速电子器件的发展前景。”该研究团队负责人表示。他们通过半导体薄膜和石墨烯转移工艺,首次制备出以肖特基结作为发射结的垂直结构的硅—石墨烯—锗晶体管。   该研究人员表示,与已报道的隧穿发射结相比,硅—石墨烯肖特基结表现出目前最大的开态电流和最小的发射结电容,从而得到最短的发射结充电时间,使器件总延迟时间缩短了1000倍以上,器件的截止频率由约1.0MHz提升至1.2GHz。   据悉,我国科研人员同时对器件的各种物理现象进行了分析,并基于实验数据建模发现了该器件具有工作于太赫兹领域的潜力,这将极大提升石墨烯基区晶体管的性能,为未来最终实现超高速晶体管奠定了基础。