《LANCET,4月1日,Using observational data to quantify bias of traveller-derived COVID-19 prevalence estimates in Wuhan, China》

  • 来源专题:COVID-19科研动态监测
  • 编译者: xuwenwhlib
  • 发布时间:2020-04-02
  • Using observational data to quantify bias of traveller-derived COVID-19 prevalence estimates in Wuhan, China

    Rene Niehus, PhD ,Pablo M De Salazar, MD ,Aimee R Taylor, PhD ,Prof Marc Lipsitch, PhD

    Published:April 01, 2020DOI:https://doi.org/10.1016/S1473-3099(20)30229-2

    Background

    The incidence of coronavirus disease 2019 (COVID-19) in Wuhan, China, has been estimated using imported case counts of international travellers, generally under the assumptions that all cases of the disease in travellers have been ascertained and that infection prevalence in travellers and residents is the same. However, findings indicate variation among locations in the capacity for detection of imported cases. Singapore has had very strong epidemiological surveillance and contact tracing capacity during previous infectious disease outbreaks and has consistently shown high sensitivity of case-detection during the COVID-19 outbreak.

  • 原文来源:https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30229-2/fulltext
相关报告
  • 《MedRxiv,2月18日,Quantifying bias of COVID-19 prevalence and severity estimates in Wuhan, China that depend on reported cases in international travelers》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-02-19
    • Quantifying bias of COVID-19 prevalence and severity estimates in Wuhan, China that depend on reported cases in international travelers Rene Niehus, Pablo M De Salazar, Aimee Taylor, Marc Lipsitch doi: https://doi.org/10.1101/2020.02.13.20022707 Abstract Risk of COVID-19 infection in Wuhan has been estimated using imported case counts of international travelers, often under the assumption that all cases in travelers are ascertained. Recent work indicates variation among countries in detection capacity for imported cases. Singapore has historically had very strong epidemiological surveillance and contact-tracing capacity and has shown in the COVID-19 epidemic evidence of a high sensitivity of case detection. We therefore used a Bayesian modeling approach to estimate the relative imported case detection capacity for other countries compared to that of Singapore. We estimate that the global ability to detect imported cases is 38% (95% HPDI 22% - 64%) of Singapore′s capacity. Equivalently, an estimate of 2.8 (95% HPDI 1.5 - 4.4) times the current number of imported cases, could have been detected, if all countries had had the same detection capacity as Singapore. Using the second component of the Global Health Security index to stratify likely case-detection capacities, we found that the ability to detect imported cases relative to Singapore among high surveillance locations is 40% (95% HPDI 22% - 67%), among intermediate surveillance locations it is 37% (95% HPDI 18% - 68%), and among low surveillance locations it is 11% (95% HPDI 0% - 42%). Using a simple mathematical model, we further find that treating all travelers as if they were residents (rather than accounting for the brief stay of some of these travelers in Wuhan) can modestly contribute to underestimation of prevalence as well. We conclude that estimates of case counts in Wuhan based on assumptions of perfect detection in travelers may be underestimated by several fold, and severity correspondingly overestimated by several fold. Undetected cases are likely in countries around the world, with greater risk in countries of low detection capacity and high connectivity to the epicenter of the outbreak. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《4月1日_利用观测数据量化基于旅行者数据得出的武汉COVID-19患病率估计值的偏差》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-04-03
    • 1.时间:2020年4月1日 2.机构或团队:哈佛大学陈曾熙公共卫生学院 3.事件概要: 哈佛公共卫生学院的研究人员在The Lancet Infectious Diseases在线发表论文“Using observational data to quantify bias of traveller-derived COVID-19 prevalence estimates in Wuhan, China”。 文章指出,利用国际旅行者的输入性病例数进行COVID-19的发病率的估算通常是基于以下假设:在旅行者中的所有病例都已确定,且旅行者和居民的感染率相同。然而,调查结果表明,各地在发现输入性病例的能力上存在差异。而新加坡在以往的传染病疫情暴发期间,具有很强的流行病学监测和接触者追踪能力,并且在COVID-19暴发期间始终显示出对病例检测的高度敏感性。研究人员使用贝叶斯模型方法估计了194个地点(不包括中国)与新加坡相比的对输入性COVID-19病例的相对检测能力。此外,研究人员还建立了一个简单的疫情中心的旅行者相对于当地居民的感染率的数学模型。 结果显示,通过模型估算,武汉到各地的COVID-19输出病例的全球加权检测能力为新加坡的38%(95%最高后验密度区间[HPDI] 22-64)。如果所有地点的检测能力与新加坡相同,那么这个数值相当于目前可以检测到的输入并报告的病例数的2.8倍(95%HPDI为1.5-4.4)。使用全球卫生安全指数的第二个组成部分对可能的病例检测能力进行分层,监测能力强的地点检测输入病例的能力为新加坡的40%(95% HPDI 22-67),监测能力中等的地点为37%(95% HPDI 18-68),监测能力低的地点为11%(95% HPDI 0-42)。将所有旅客视同当地居民对待(而不是考虑到部分旅客在武汉的短暂停留时间),这也是导致患病率被低估的原因之一。 文章指出根据旅行者中患者被100%发现的假设,对病例数的估计可能被低估了几倍。此外,严重程度的估计也会被夸大几倍,因为它们也依赖于病例数的估计。文章指出其模型支持以下证据,即未被检测到的COVID-19病例可能已在世界上大多数地方传播,而在检测能力低、与疫情中心连接性强的地区风险最大。 4.附件: 原文链接:https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30229-2/fulltext