《缓变折射率分限异质结构AlGaN纳米线用于紫外线激光二极管》

  • 来源专题:集成电路设计
  • 编译者: shenxiang
  • 发布时间:2018-08-02
  • AlGaN发光器件是一种很有前途的紫外线光源,以取代现有的紫外气体激光器和含有有毒物质(汞)的紫外线灯。然而,基于AlGaN的紫外发射器的性能是有限的,特别是高功率紫外激光二极管(低于330nm的发射)还没有被报道。此外,紫外激光二极管(>330nm)的阈值工作电压很高,由于注入效率不高,在高串联电阻激光模式下超过25V。

    器件性能中的这些限制归因于几个因素,例如存在高密度缺陷(位错)和低效的富Al型AlGaN层的p型掺杂,以及现有器件方案缺乏有效的热耗散通道。因此,迫切需要一种新的设备方案。

    AlGaN纳米线被发现是克服这些障碍的有前景的候选材料。与AlGaN外延薄膜层相比,因为与大的表面体积比相关的有效应变弛豫,无缺陷AlGaN纳米线可以直接生长在许多衬底(包括金属)上。金属或金属涂层的硅或蓝宝石衬底可以提供更好的散热通道,用于大电流操作。此外,由于更有效的镁(Mg)掺入和较低的活化能,p型纳米线(Si、Ge、GaN等)被认为具有相对低的电阻率。因此,发展由AlGaN 纳米线制成的紫外光源是一个让人非常感兴趣的研究领域。

    近日,由沙特阿拉伯国王阿卜杜拉理工大学(KaSUT)的Haiding Sun, Xiaohang Li, Boon S Ooi等人领导的一个研究团队首次提出了一种新的无位错纳米线结构,其具有缓变折射率分限异质结构(GRANSCH)构型。研究人员在两个成分梯度的AlGaN层中嵌入一个活跃区域,即构成GRANSCH 二极管。

    图1 制作的纳米线GRINSCH紫外发射器的3D示意图和GRANSCH和传统的p-i-n二极管的I-V曲线。

    广泛的理论和实验工作表明,这种二极管具有优良的电气和光学性能。计算的电子能带图和载流子浓度表明,即使在没有故意掺杂的情况下,梯度AlGaN层中的电子和空穴浓度为1018/cm3的p-n结也能自动形成。与传统的Pi-N二极管相比,在GRANSCH二极管中实现了显著降低的6.5V(减小2.5V)和较小的串联电阻(16.7Ω)(减小了近四倍)。

    这种电性能的改善主要归因于引入成分梯度的AlGaN层,由于极化诱导的N和P掺杂增强了电子和空穴的输运性质。此外,还证实了具有较大光学限制的更好的载流子分布(电子和空穴)。因此,研究人员相信GRANSCH二极管可以为开发固态UV光电器件、特别是未来的激光二极管提供一种非常规的途径

    低缺陷/位错密度、低导通电压和小的片状电阻以及更好的散热通道是实现高性能III族氮化物基UV和可见光器件的关键先决条件。该研究团队所提出的设备方案具有:

    (1)结构无位错;

    (2)采用Ti/TaN双金属涂层Si衬底,效率降低;

    (3)利用偏振诱导掺杂显著改善I-V特性;

    (4)更好的载流子和光学约束(激光结构的关键)。

    以前,这样的GRANSCH二极管配置已经成功地实现在常规III-基于VI(例如,GaAs,InP)激光二极管中,通过同时改善载流子注入和垂直光学模式限制。因此,具有GrRSCH结构的紫外激光二极管设计可以利用偏振增强p型掺杂,同时实现更好的载流子和光学模式限制。

相关报告
  • 《铝镓氮化物壳纳米线紫外光发光二极管》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2019-05-19
    • 美国国家标准与技术研究院(NIST)和美国科罗拉多大学报告称铝氮化镓/氮化镓(AlGaN / GaN)壳/核纳米线发光二极管(LED)的其光输提高了出约为5倍。 利用AlGaN / GaN来开发诸如365nm波长的紫外LED可以广泛应用于杀毒、消菌、印刷、通信和特殊照明等领域。这些领域有的一些需要深紫外LED,即UV波长更短,小于300nm。纳米线结构有助于提高传统技术下的高铝含量AlGaN LED的效率(大多数低于10%)。 首先,使用等离子体辅助分子束外延(PAMBE)在具有氮化硅掩模的(111)硅上的氮极性GaN / AlN模板上生长有序的纳米线阵列。硅掺杂的n-GaN核在860℃的衬底温度下生长。核心长度约为2μm,修改纳米线生长过程以包括对p-i-n LED的掺杂。LED p接触电极由垂直入射的20nm / 200nm镍/金沉积构成,接着是45nm的200nm金。使AlGaN / GaN LED经受延长的电流注入似乎对p接触具有电退火效应,从而提供增加的电致发光(EL)强度和更低的串联电阻。进一步开发优化的p接触金属化和退火工艺有望降低老化效应并提高整体器件性能。 研究人员比较了AlGaN / GaN异质结LED与先前由该组报道的GaN / GaN同质结纳米线器件的性能,AlGaN / GaN LED的导通电压高于GaN / GaN,可能与降低的电子溢流电流和增加的Al摩尔分数预期的空穴注入势垒有关。对于给定的电流注入,AlGaN / GaN纳米线LED中的集成EL强度约为GaN / GaN基准的5倍。
  • 《分布式反馈光栅用于氮化铟镓激光二极管》

    • 来源专题:集成电路
    • 编译者:Lightfeng
    • 发布时间:2019-05-04
    • 沙特阿拉伯国王阿卜杜拉科技大学(KAUST)声称在工作中实现了迄今为止铟氮化镓(InGaN)分布式反馈(DFB)激光二极管(LD)的最高侧模抑制比(SMSR),这个值为36.9dB。研究人员评论说:“这样可以在各种应用中实现窄线绿色激光二极管,例如原子冷却、光谱学、光学通信。” 窄线发射通常需要外部复杂和庞大的滤波技术,以减少相对于主峰的侧模的存在。一种替代方案是将DFB光栅单片集成到激光二极管的结构中,这种方法在用于红外化合物半导体系统中构造的激光二极管中已经很常见。此外,DFB已应用于蓝色和紫外线InGaN器件,但具有较低的SMSR值。 KAUST研究人员使用了Osram PLP520激光二极管,用聚焦离子束曝光将DFB光栅蚀刻到器件表面中以产生凹槽。假设激光二极管材料中的有效折射率为2.5,光栅周期为4.12μm,目标是输出波长为515nm。 绿色激光二极管的法布里-珀罗(FP)腔长度为905μm,脊宽为4μm。生产了两个装置(A和B),第一个器件A使用DFB,它分为三个阶段(DFB + 1- + 3),部分由22个沟槽/半导体对组成。SMSR随着DFB的延长而增加。在300mA(8.28kA / cm2)连续波电流注入和温度保持在20°C时,没有DFB的原始设备的SMSR为0.2dB,而当DFB建立到第三+3阶段时,SMSR增加先后步进:0.34dB,1.45dB和2.23dB。 研究人员认为改进可能来自制造参数的优化,例如脊宽和长度,光栅顺序和占空比,蚀刻深度和钝化。