《用镍纳米颗粒来发展3D打印技术》

  • 来源专题:印刷电子
  • 编译者: nano
  • 发布时间:2016-03-11
  • 2016 年 3 月 8 日纳米尺寸技术公司已经与特拉维夫大学签署了合作协议,发展在大学实验室开发的纳米镍材料 3D 打印方法。 镍是一种金属具有优异的力学性能和很高耐腐蚀性能,使它适合印刷应用。然而,当利用镍纳米粒子制作的油墨进行喷墨打印时,形成的粒子团簇能够堵住打印喷头的喷嘴。研究人员目前发明了一种新的墨水,可以形成一种稳定的纳米镍金属粒子溶液,而不会形成团簇。这项技术主要使用湿法化学合成,基于减少镍化合物的反映和覆盖粘合剂而形成最终的产品。

相关报告
  • 《利用聚合物开发3D打印中的金纳米颗粒》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-04-02
    • 3D打印,也被称为增材制造,已经成为一种非常有用的技术,用于制造非常小和复杂的结构。它最初的建立促进了个人和有趣的对象的创造,这些对象是由对技术感兴趣的人在家里打印出来的。 然而,随着时间的推移,越来越多的制造商开始转向3D打印方法,以比其他方法更低的成本生产复杂的定制零件。这是一个不断发展的科学、工程和制造领域,而且很可能在未来许多年内继续沿着这条道路发展。 与3D打印这种相对较新的技术不同,金纳米颗粒已经被使用了很多年——甚至在我们知道纳米颗粒是什么之前。这在4世纪的人工制品Lycurgus杯中表现得很明显,金纳米颗粒被证明是造成所观察到的二色性颜色的原因。 在现代科学中,金纳米颗粒已经被用于多种应用,从抗癌剂到表面等离子体成像增强剂,再到电子、催化剂、主动传感器材料中的导电管道,等等。 与更复杂的纳米颗粒相比,它们合成起来相对简单,而且它们的广泛应用意味着研究人员现在正在转向其他制造、使用和整合它们的方法。 近年来,研究人员开发了利用3D打印方法,在打印过程中将金纳米颗粒直接与聚合物和其他介质结合,从而生成包含金纳米颗粒的3D打印复合材料。 近年来,这一交叉领域取得了长足的进步,为光学和制药行业带来了广阔的发展前景。下面,我们来看看这个领域是如何发展的。 通过3D打印在聚合物中嵌入金纳米颗粒 利用这些技术的一种更成熟、更常见、更简单的方法是使用聚合物作为嵌入多种类型纳米颗粒(包括金纳米颗粒)的复合介质。 现在有很多聚合物纳米复合材料,但是最近的一项研究涉及到使用聚合物和金纳米颗粒来制造本质上是双色的3D打印复合材料(很像Lycurgus杯子),用作光学过滤器。 以聚醋酸乙烯酯(PVA)为载体,采用熔融沉积模拟(FDM)方法制备了纳米复合材料。当纳米颗粒- pva纳米复合材料干燥时,呈现出一种棕色反射和紫色透射的二向色效应,而用更传统的方法形成的类似纳米复合材料则没有这种效应。 研究人员还用这种双色材料制作了一个花瓶和一个水杯,虽然要使用,但它们需要涂上一层聚二甲基硅氧烷(PDMS),以防止水渗透到纳米复合材料中。 使用微流体 这一领域虽然没有那么发达,但却很有趣,它依赖于制造可用于合成金纳米颗粒的聚合装置,而不是在3D打印过程中使用它们。 研究人员利用FDM技术制造了一种聚乳酸(PLA)微流控装置,并将其置于聚甲基丙烯酸甲酯(PMMA)载玻片上,以制造微流控通道。这些微流体通道随后被用作反应室,通过连续流动的合成路线来制造金(和银)纳米颗粒,因为这可以防止聚合物通道被污染。 通过改变微流体的合成参数(浓度、温度、流速等),可以制备出不同尺寸的金纳米颗粒。 制造纳米金墨水 最近的一项研究涉及使用梳状聚合物体系结构来开发金纳米颗粒油墨。该团队使用了不同的逐步增长聚合和click化学方法来开发不同的聚合物体系结构(基于聚氨酯),可以包裹和封装金纳米粒子。 然后是(3D打印)喷墨打印的封装金纳米颗粒油墨。在许多情况下,金纳米颗粒油墨在喷墨打印时是不稳定的,因为纳米颗粒易于凝聚,但在封装时,聚合物稳定了金纳米颗粒,这意味着它们可以在表面打印而不会发生凝聚。 聚合物-纳米颗粒油墨被发现是长期稳定的(超过6个月)。金纳米粒子在制药工业中有很大的潜力,这种聚合物稳定印刷方法可以用于制造稳定的、定制的金纳米粒子生物传感器。 人们认为,这种方法也可以用于稳定和在聚合物中嵌入其他金属纳米颗粒,从而为更多的应用开辟了潜力。
  • 《用DNA制造3D纳米超导体》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2021-03-09
    • 用DNA制造3D纳米超导体 纳米超导结构的研究被用于揭示各种物理现象,并带来了广泛的应用。但是由于目前缺乏建立工程三维纳米结构的方法,纳米超导研究大多集中在一维和二维结构上。 2020年11月10日Nature Communication报道,美国能源部布鲁克海文国家实验室研究者成功利用DNA的可编程性制造了3D纳米超导体,该结构将在量子计算和传感中发挥重要作用。 该研究提出了一种“自下而上”的方法,使用基于DNA的自组装方法来创建具有指定多尺度组织的三维超导纳米结构。研究者将八面体DNA骨架与纳米金颗粒结合,通过骨架的顶点连接,组装成三维的DNA超晶格,得到48nm单元胞的立方体超晶格。为了形成超导超晶格,研究者使用化学技术用二氧化硅包被DNA晶格,将其从软的、依赖于液体环境的大分子结构转变为固体结构,成功将DNA超晶格转化为高度结构化的三维二氧化硅支架,然后在其表面包覆超导铌(Nb)。通过低温电性表征,研究证明了这个逐步转化的过程可用于创建约瑟夫森结的3D阵列。 这种3D纳米超导体可用于开发各种应用,如用于测量磁场矢量的三维超导量子干涉器件(SQUIDs)、高灵敏度超导量子干涉滤波器(SQIFs)和用于量子信息系统的参数放大器。 吴晓燕 编译自https://www.sciencedaily.com/releases/2020/11/201110081600.htm 原文链接:https://www.nature.com/articles/s41467-020-19439-9 原文标题:DNA-assembled superconducting 3D nanoscale architectures