《分子细胞卓越中心揭示基底膜调控乳腺癌糖酵解的机制》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2023-02-14
  •   近日,中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)研究员葛高翔团队以Type IV collagen α5 chain promotes luminal breast cancer progression through c-Myc-driven glycolysis为题在Journal of Molecular Cell Biology上在线发表最新研究成果。该研究揭示了肿瘤微环境中的基底膜促进管腔型乳腺癌细胞糖酵解的机制,阐释了细胞外基质如何通过调控肿瘤细胞代谢,促进肿瘤的发生发展。

      肿瘤细胞代谢重编程是肿瘤的特征之一。在癌基因和肿瘤微环境的双重驱动下,肿瘤细胞更加偏好利用有氧糖酵解供能以维持其细胞增殖等生命活动。在低氧、低pH值、营养物质匮乏和氧化应激的肿瘤微环境刺激下,肿瘤细胞与肿瘤微环境中的基质细胞、免疫细胞交互通讯,调节肿瘤细胞代谢和肿瘤的发生发展。然而,细胞外基质作为肿瘤微环境中主要的非细胞组分,是否调控肿瘤细胞的糖酵解仍知之甚少。

      细胞外基质根据其空间组织定位可以分为填充组织间隙的细胞外基质和基底膜。基底膜是一类特化的细胞外基质,适应不同组织功能的需求,不同组织中的基底膜结构有很大差异。乳腺癌分为管腔型、HER2过表达型、基底细胞样型及正常乳腺样型。为阐明不同类型乳腺癌的细胞外基质微环境特征,研究人员对TCGA数据库进行了挖掘分析,发现不同类型的乳腺癌有着类型特异性的基底膜组成。其中,基底膜的核心组分IV型胶原蛋白α5链【α5(IV)】的表达在管腔型乳腺癌中高度富集,其表达受管腔型乳腺癌转录因子雌激素受体的调控。

      进一步研究发现,α5(IV)胶原蛋白对维持管腔型乳腺癌的增殖潜能至关重要。敲低α5(IV)抑制了管腔型乳腺癌细胞葡萄糖摄取、有氧糖酵解与ATP合成,从而抑制肿瘤细胞增殖。分子机制方面,α5(IV)胶原蛋白通过其非整合素受体DDR1及其下游p38 MAPK调控c-Myc转录因子的磷酸化和转录活性,进而调节葡萄糖转运蛋白Glut1与糖酵解通路代谢酶的表达,促进细胞增殖和肿瘤生长。α5(IV)胶原蛋白缺失的细胞中回补组成型激活形式的DDR1受体或c-Myc可以恢复管腔型乳腺癌细胞的糖酵解与细胞增殖。

      研究人员结合生物信息学分析和肿瘤模型,发现基底膜组分α5(IV)胶原蛋白在管腔型乳腺癌中受雌激素受体的调控而高表达,进而维持了管腔型细胞的糖酵解和增殖,促进了肿瘤的生长。这项研究从肿瘤细胞代谢的角度阐释了细胞外基质如何促进肿瘤的发生发展,表明细胞外基质是调控肿瘤细胞代谢的关键分子。

      相关研究工作得到国家自然科学基金委和科学技术部重点研发计划的资助。

  • 原文来源:https://www.cas.cn/syky/202212/t20221227_4859145.shtml
相关报告
  • 《分子植物卓越中心揭示种子萌发调控新机制》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2025-07-15
    • 中国科学院分子植物科学卓越创新中心赵春钊研究组在《细胞报告》(Cell Reports)上,发表了题为FERONIA controls ABA-mediated seed germination via the regulation of CARK1 kinase activity的研究论文。该研究借助遗传学、生物化学和生物信息学等研究手段,揭示了类受体激酶FERONIA通过类受体胞质激酶CARK1调控脱落酸信号通路和种子萌发的新机制。种子是农业生产的“芯片”,关系到粮食安全问题。种子萌发通常受到环境因素的影响,因此研究逆境环境下种子萌发的调控机制,对于培育优良种子具有理论意义和应用意义。 脱落酸(ABA)核心信号通路包括脱落酸受体PYR1/PYLs、磷酸酶PP2Cs和激酶SnRK2s,在调控种子萌发过程中发挥着重要作用。研究表明,脱落酸受体PYR1/PYLs受到多个激酶磷酸化修饰,而磷酸化修饰的早期调控机制有待解析。类受体激酶是细胞膜定位蛋白之一,参与植物对外界信号的感知和传递,在植物生长发育和环境响应中具有关键作用。植物细胞存在大量类受体胞质激酶,而这类蛋白通常作用于类受体激酶的下游来传递外界信号。研究发现,类受体激酶FER和类受体胞质激酶CARK1作用于一个信号通路来调控脱落酸介导的种子萌发。 研究显示,FER基因突变导致脱落酸条件下种子萌发加快,而脱落酸触发的SnRK2s激活减弱,表明FER在脱落酸信号转导中发挥正调控作用。研究通过分析FER的免疫沉淀-质谱数据发现,ER和类受体胞质激酶VIII亚家族成员CARK1存在相互作用。CARK1是在种子中高表达的类受体胞质激酶,而随着种子萌发其转录水平逐渐降低,说明CARK1在种子萌发过程中可能发挥负调控作用。同时,CARK家族成员CARK2、CARK10和CARK11也在种子中高表达,并随着种子萌发而表达量下降,说明CARK基因或共同参与调控种子萌发。 生化结果显示,FER磷酸化CARK1的第233位丝氨酸和第234位苏氨酸这两个位点的磷酸化是CARK1激酶活性所需要的。结果表明,FER通过磷酸化来增强CARK1的激酶活性。同时,cark1单突变体表现出在脱落酸条件下萌发快的表型,而Ser233和Thr234位点突变成Ala的CARK1不能互补cark1的萌发表型,说明Ser233和Thr234的磷酸化对于CARK1的功能是必需的。ABI5是脱落酸信号通路下游抑制种子萌发的主要转录因子,而在fer-4和cark1突变体中脱落酸诱导的ABI5积累降低,表明FER和CARK1通过脱落酸信号通路正调控ABI5的蛋白稳定性。遗传分析显示,过量表达脱落酸受体PYL9能够抑制fer-4突变体在脱落酸条件下种子萌发快的表型,证明FER通过ABA信号通路调控种子萌发。因此,FER通过磷酸化修饰激活CARK1激酶,正调控脱落酸介导的种子萌发抑制。 该研究揭示了直接作用于FER下游的类受体胞质激酶,阐明了脱落酸和胁迫条件下种子萌发调控的新机制。研究工作得到国家重点研发计划、国家自然科学基金、中国科学院相关项目等的支持。
  • 《分子细胞卓越中心发现核仁新结构调控核糖体RNA末端加工机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-03-11
    • 3月9日,中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)陈玲玲研究组在《自然》(Nature)上,在线发表了题为Nucleolar URB1 ensures 3' ETS rRNA removal to prevent exosome surveillance的研究论文。该工作利用高分辨率活细胞显微成像技术,通过筛选200个核仁候选蛋白质发现12个在纤维中心/致密纤维组分(FC/ DFC)外围富集的蛋白质,并命名该区域为致密纤维组分外侧区域(periphery of DFC,PDFC)。研究解析发现,位于PDFC的URB1(unhealthy ribosome protein 1)是一种具有非流动特征的核仁蛋白质,对维持PDFC的完整性、锚定pre-rRNA 3’端及保证其正确折叠和加工起到重要作用。该工作揭示了核仁的超微精细结构,为解析核仁的功能和结构提供了全新见解,并为探索核仁蛋白质在pre-rRNA加工中的功能协调以及对核糖体生成和胚胎发育影响提供了全新思路。   陈玲玲研究组长期致力于lncRNA代谢与功能的研究。前期研究通过non-poly(A)测序(Yang et al., Genome Biol 2011)发现一类新型lncRNA家族。它们来自内含子,两端以snoRNA结尾,被命名为sno-lncRNA(Yin et al., Molecular Cell 2012)。SLERT是其中一个sno-lncRNA,完全定位在细胞核仁(Xing et al., Cell 2017)。核仁是细胞核内一个复杂且高度动态变化的无膜亚结构,是细胞核内核糖体RNA(ribosomal RNA,rRNA)的加工厂。它在调节rRNA的转录、加工以及核糖体亚基组装中具有重要作用。核仁在形态上由内而外可以分为三层结构——多个纤维中心(Fibrillar Center,FC)和致密纤维组分(Dense Fibrillar Component,DFC)形成球状结构镶嵌在颗粒区(Granular Component,GC)内。既往研究表明,SLERT直接结合核仁蛋白DDX21并调控其形成的环状结构的大小进而促进RNA聚合酶I转录(Xing et al., Cell 2017;Wu et al., Science 2021)。RNA聚合酶I转录复合物聚集在FC区域边缘对核糖体DNA(rDNA)进行转录;rRNA前体(pre-rRNA)加工蛋白质在DFC区域参与调控rRNA前体的定向转运和核仁DFC环簇状结构的组装(Yao et al., Molecular Cell 2019)。这些在FC/DFC单元产生的rRNA占细胞内总RNA的约85%,因而在FC/DFC中rRNA成熟的过程是一个受到精密调控的过程。加工修饰完成的pre-rRNA进入GC区域参与核糖体亚基的组装。核仁的重要功能毋庸置疑,但多数核仁蛋白质的精确定位及其如何参与pre-rRNA高效有序加工等基础生物学问题尚不清楚。   研究利用CRISPR/Cas9技术构建了DFC/GC双色荧光蛋白质标记的参考细胞系,在此细胞系内对200个核仁候选蛋白质进行了高分辨率的活细胞成像,并筛选到140个定位在细胞核仁不同亚结构区域的蛋白质。对这140个核仁蛋白质的研究发现,12个蛋白质定位于DFC外部,形成厚度约为200 nm的球壳状新结构,被命名为PDFC。研究进一步利用光学超分辨显微成像系统性地完善了核仁的精细亚结构分析,为更好地解析核仁组织结构和工作机制奠定了重要基础。   研究发现,PDFC关键蛋白质URB1具有分子量大、流动性慢的特征,对于维持PDFC的结构和功能颇为重要。此外,URB1还参与调控pre-rRNA 3’末端ETS 区域 (External transcribed spacer, ETS)折叠和加工。URB1在PDFC的定位参与了3’ETS的锚定、折叠与去除。URB1缺失导致3’ETS折叠异常,U8 snoRNA与pre-rRNA的结合受阻,导致3’ETS的加工异常。   这些异常的pre-rRNA中间产物在核仁中大量累积,进而激活RNA稳态监控系统(RNA Exosome)在核仁发挥活性,引发异常pre-rRNA的降解,致使成熟的28S rRNA减少,无法维持细胞内核糖体的稳态和蛋白质合成,因而造成斑马鱼和小鼠的早期发育缺陷,甚至死亡。   该工作利用超高分辨率生物成像、单分子RNA成像、RNA二级结构解析以及动物模型等多种研究手段,全面揭示了核仁精细结构与pre-rRNA的加工相互协同,共同维持核仁内微环境稳定,为认识核仁功能提供了全新见解。此外,该研究证明了URB1这类非流动性蛋白质在核仁液-液相分离环境中的关键组织作用,为探究三维pre-rRNA加工机制、核仁组装形成和功能提供了新思路。   研究工作得到中国科学院、国家自然科学基金、科技部和上海市科学技术委员会等的资助,并获得分子细胞卓越中心细胞分析技术平台、斑马鱼技术平台、分子生物学技术平台和浙江大学良渚实验室的支持。