《西工大团队在Li-CO2电池贵金属正极材料设计方面重要进展》

  • 来源专题:新能源汽车
  • 编译者: 王晓丽
  • 发布时间:2023-11-16
  • 近日,西北工业大学材料学院谢科予教授团队在《Advanced Materials 》发表题为“Intrinsic Descriptor Guided Noble Metal Cathode Design for Li-CO2 Battery”的研究成果,研究首次提出了一个由金属dx2-y2轨道以及电负性构成的本征描述符并用于指导空气电池正极设计,在此基础上实现了超低过电势Li-CO2电池的长时间稳定循环。

    该研究为电池高性能正极催化剂提供了有效的设计和筛选策略,加速了金属空气电池行业的发展。

    参考文献:Guo, C., et al., Intrinsic Descriptor Guided Noble Metal Cathode Design for Li-CO2 Battery. Advanced Materials, 2023. 35(33): p.2302325.

相关报告
  • 《上海硅酸盐所在钠离子电池材料设计方面取得进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-10-17
    •         近日,中国科学院上海硅酸盐研究所研究员刘建军团队与华中科技大学教授黄云辉团队通过合作研究,设计有机共轭分子的三维折扇排列与过渡金属离子配位构建纳米金属有机框架(MOF)材料苝四甲酸锌(Zn-PTCA),首次突破共轭碳环储钠的电化学活化,极大地提高了电极材料的储钠容量,为进一步设计新型高比容量电极材料提供新思路。相关研究成果在Chem 杂志发表。   具有三维孔道结构的MOF纳米材料主要通过过渡金属离子(或者纳米团簇)与有机配体自组装而成,因具有孔道结构易调控、比表面积高和表面官能团丰富等特点在气体吸附与分离、纳米催化等方面有广泛应用。然而由于比容量有限,在电化学储能材料应用方面受到极大限制。以钠离子电池材料为例,钠离子电池中金属有机电极材料的储钠位点主要集中在表面丰富的官能团(C=O、C≡N),可通过官能团和结构骨架共轭环内的单双键重排机制实现电子稳定存储。但由于半径较大的钠离子很难嵌入MOF材料有机共轭骨架的层间,以及钠离子嵌入层间对层间范德华力的破坏且与共轭碳环间较弱的作用力等原因导致钠离子很难储存在有机结构骨架共轭碳环(sp2-C)中,进而导致MOF材料的可逆比容量较低。因此,活化共轭碳环储钠的电化学活性,对提高电极材料存储容量至关重要,但具有较大挑战性。   刘建军团队结合第一性原理的计算电化学、分子动力学模拟、电子结构分析,研究发现三维折扇状的金属有机材料具有共轭碳环sp2-C储存钠离子的特征,实现共轭碳环储钠的理论设计与实验验证。发现以稳定的六配位过渡金属替代钠离子,可将层状的苝四甲酸钠转变为三维折扇状的苝四甲酸锌,过渡金属配位化学键代替有机层间的范德华力,形成的开放式空间结构既消除了储钠破坏范德华力的影响,又提高了Na+的迁移动力学速率。计算电化学结果与实验电化学表征相吻合,均证实了Zn-PTCA中Na+与官能团-COO-、Na+与共轭碳环sp2-C的两步嵌钠反应,达到了357 mAh g-1的相当高的比容量。充放电过程的原位XRD、NMR、红外光谱表征均显示材料在低放电压下且多次循环后,结构框架仍具有良好的稳定性。   该研究工作得到国家重点研发计划、国家自然科学基金面上项目、上海市材料基因组项目等的支持。
  • 《宁波材料所在先进气体传感材料与传感器关键技术方面取得进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-04-06
    • 传感器与计算机、通信被称为信息系统的三大支柱,传感器技术的优劣成为衡量一个国家科技水平和是否处在国际战略竞争制高点的重要标志,是发达国家高度重视的核心基础技术。传感器产业已被国内外公认为是具有发展前途的高技术产业,其技术含量高、经济效益好、渗透力强、市场前景广等特点为世人所瞩目。   由中国科学院宁波材料技术与工程研究所研究员杨明辉带领的固体功能材料团队在先进气体传感材料的研发与先进气体传感器设计方面进行了系统的研究。通过对材料结构、形貌及组成的设计,开发出一系列高性能的气体传感材料,包括首次将金属氮氧化物异质结构材料应用于气体传感材料(Small, 2016, 12(23): 3128-3133)、首次合成纯相Sn3N4材料并应用于酒精传感(Chemistry of Materials, 2017, 29(3): 969-974) 及多种多壳层中空传感材料(ACS Applied Materials & Interfaces, 2018, 10(17): 15314-15321、Nanoscale, 2016, 8(36): 16349-16356等)。   团队在研发高性能传感材料的基础上,开发了多种类型气体传感器以满足不同应用环境,主要包括半导体型、电化学型、催化燃烧型及光学型气体传感器。团队目前已经采用先进的制造工艺,开发了低功耗、小尺寸、高性能的多种气体传感器。   基于研制的先进气体传感器件,固体功能材料团队正在积极研制多场景智能气体检/监测装备。“室内空气监测设备”面向室内典型的污染物进行监测,主要包括VOCs( 甲醛、苯系物)、颗粒物(PM2.5、PM10) 及臭氧等,实时获取室内空气质量状况,并及时反馈到空气净化装置。“空气质量微型监测站”面向室外空气污染物的监测,主要包括颗粒物(PM2.5、PM10)、NO、CO、SO2及O3。设备在城市中进行网格化布置,并通过无线网络将数据及时传回控制中心,实现对污染源迅速定位,促使人员快速赶赴现场排查原因,对其进行紧急处置,尽量将污染所产生的影响降到最低。