《纳米颗粒为基础的纳米药物促进癌症免疫治疗:最近的进展和未来的方向》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2019-03-27
  • 癌症免疫疗法是一种很有希望的癌症终结者,通过引导患者自身的免疫系统对抗这种具有挑战性的疾病。尽管几种免疫治疗策略在临床应用中具有巨大的治疗潜力,但由于免疫治疗药物在肿瘤组织中的积累不足和致命的副作用,它们的有效反应是有限的。在过去的几十年里,越来越多的证据表明,纳米技术通过赋予纳米材料合理的物理化学性质,成为解决这些技术障碍的一个有吸引力的解决方案。在这篇综述中,重点将从目前对纳米系统结构特性(如尺寸、形状、表面电荷、弹性)及其化学修饰对其传输和生物分布行为的影响的理解中引出。随后,从传统疫苗策略到最近的新方法,包括提供免疫疗法(如完整的癌细胞疫苗、免疫检查点阻断和免疫原细胞死亡)和工程免疫细胞,以调节肿瘤微环境和激活细胞免疫,纳米颗粒为基础的癌症免疫疗法的快速进展被总结出来。未来的前景可能涉及到几种免疫疗法的合理结合,以更有效地抑制和消除癌症。

    ——文章发布于2019年3月25日

相关报告
  • 《纳米技术在癌症中的应用:脑瘤治疗的未来》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-05-09
    • 纳米医学是纳米技术和医学的交叉领域,随着研究人员发现越来越多的纳米材料和功能化纳米材料(通常是有机分子)与人体生物相容,纳米医学正在成为一个广泛发展的领域。 在这一领域,有大量的应用领域,其中之一是纳米颗粒为基础的治疗,可以摧毁癌症肿瘤。在所有不同的癌症治疗方法中,大脑可能是最具挑战性的一个,但研究人员现在正在寻找基于纳米技术的治疗方法,可以用来治疗脑瘤。 与其他器官相比,由于大脑的敏感性,治疗脑瘤是一项棘手的任务,而且患者的存活率在癌症患者中是最低的。在许多情况下,病人在最初诊断后预计只能活到14个月。 脑癌患者的主要原因之一,预后不佳是因为传统的化疗用于摧毁癌症难以通过血脑屏障,这意味着他们没有达到足够浓度的肿瘤是有效的(在许多情况下,并不是)。 这也带来了次要的问题,因为化疗药物会在体内循环,如果这些药物不能针对预期的肿瘤,就会对身体的其他部分造成伤害。近年来的主要解决方案之一是使用纳米颗粒,因为让纳米颗粒穿过血脑屏障已经取得了一些成功。这意味着纳米粒子作为纳米载体,现在已经成为比许多传统化疗更有效的治疗脑肿瘤的方法。 纳米粒子传递的学术发展 有很多方法可以将纳米颗粒送到大脑。例如,在2018年,伦敦帝国理工学院(Imperial College London)的研究人员成功地使表面带有DNA的金纳米粒子功能化,并使用超声波(低能量波)打开血脑屏障,使纳米粒子能够通过。这是通过制造声音微泡来实现的,这些微泡振动血液,导致血脑屏障暂时打开。 虽然这项研究更关注的是找到打开血脑屏障的方法,而不是治疗本身,但打开血脑屏障的能力非常重要,因为它是开发新疗法的关键障碍之一。在这项研究中使用的功能化纳米颗粒可以用来运输可以摧毁脑肿瘤的治疗药物。 该领域的研究旨在找到生物相容性和活性性能之间的平衡,而对于纳米颗粒来说,这些性能通常与纳米颗粒在其表面的功能化有关。 来自英国和新加坡的研究人员研究了可以添加到纳米颗粒表面的不同表面活性剂,发现与其他表面活性剂分子相比,含有聚乙二醇的表面活性剂更容易穿过血脑屏障。 此外,寻找更多的方法来跨越血脑屏障是学术研究的一个重要难题,因为已知的有效载荷可以被纳米颗粒携带到脑肿瘤中,而如何将它们带到那里一直是一个问题。这种方式的工作很重要,因为它可以找到穿过血脑屏障的方法,而不需要施加外部刺激。 最近的一项研究是2020年在中国进行的。研究人员功能化量子点与多个配对α-carboxyl和氨基酸组,这样纳米颗粒模拟大量氨基酸的结构。 这意味着纳米颗粒可以被一种名为LAT 1的受体分子识别,这种受体分子存在于肿瘤和血脑屏障中,但不存在于大多数健康的器官中。这使得量子点纳米颗粒能够穿透血脑屏障而不受外部刺激(因为它们会给人一种它们是营养物质的印象),并附着在肿瘤上。 这些特殊分子的临床应用还有很长的路要走,但研究表明,如果他们设计出针对血脑屏障上LAT 1受体的纳米颗粒,未来的治疗可能会更成功。 纳米粒子治疗脑肿瘤的商业发展 纳米颗粒不仅在学术界用于治疗脑瘤;它们可以在市场上买到,并被用来治疗脑瘤患者。Magforce是一家总部位于德国的公司,它使用一种由超顺磁性氧化铁纳米颗粒组成的铁磁流体来杀死癌细胞。 与许多其他纳米颗粒癌症治疗不同,氧化铁纳米颗粒不作为纳米载体。相反,它们会产生局部热量,杀死癌细胞。已经有许多学术研究以类似的方式开展工作,但Magforce是最早生产和商业化使用它们的公司之一。 这种治疗方法可用于多种肿瘤。它并不是针对脑瘤的,但是在临床应用中已经有了使用这些纳米颗粒治疗脑瘤的结果。 这种治疗方法是将磁性纳米颗粒定位在肿瘤附近,然后暴露在外加磁场中。磁场以每秒10万次的速度改变纳米颗粒的极性,从而产生局域热。这种热量被用来杀死癌细胞,随着时间的推移,杀死肿瘤。 未来治疗脑瘤的前景 与传统的化疗相比,纳米颗粒的应用为治疗脑肿瘤提供了更多的可能性。利用纳米技术对抗脑肿瘤的未来看起来很有希望,因为现在有学术和商业上的发展,有望确保脑瘤患者有更好的生存机会。 治疗脑瘤的研究相对来说还比较新颖,因此可能会出现更有效的治疗方法,提高脑癌患者的存活率。
  • 《新技术可以提高纳米药物的治疗效率》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-07-29
    • 莫斯科物理与技术研究所的研究人员和他们的同事从Shemyakin-Ovchinnikov有机化学研究所和普罗霍罗夫普通物理研究所俄罗斯科学院已经开发出一种突破性技术要解决的关键问题,避免引入小说几十年来药物进入临床实践。 这种新溶液可以延长任何纳米药物的血液循环,提高其治疗效率。俄罗斯研究人员的研究发表在《自然生物医学工程》杂志上,并在该杂志的新闻和观点部分刊登了专题报道。 19世纪末以来,医学化学的发展导致了传统医学向化学公式严格定义的药物的转变。尽管已有150年的历史,这种模式仍然是绝大多数现代药物的基础。它们的活性分子倾向于执行一个简单的功能:激活或停用某个受体。 然而,自20世纪70年代以来,许多实验室一直在研究能够同时实现多种复杂功能的新一代药物。例如,通过一系列生化线索来识别癌细胞,向医生指示肿瘤的位置,然后通过毒素和加热来摧毁所有的恶性细胞。 由于一个分子不能完成所有这些功能,一个更大的超分子结构,或纳米颗粒,必须使用。 然而,尽管纳米材料的种类繁多,迄今为止,只有最简单的具有高度特异性功能的纳米材料进入临床实践。使用治疗性纳米颗粒的主要问题与我们免疫系统惊人的效率有关。千百年来,进化完善了人体消除纳米大小外来实体的能力,从病毒到烟雾颗粒。 在合理的剂量下,大多数人工纳米颗粒能在几分钟甚至几秒钟内被免疫系统从血液中清除。这意味着,无论药物多么复杂,大部分剂量甚至都没有机会接触目标,而是会影响健康组织,通常是以有毒的方式。 由MIPT纳米生物技术实验室负责人Maxim Nikitin领导的俄罗斯研究团队在他们最近的论文中提出了一项突破性的通用技术,可以显著延长血液循环,提高各种纳米制剂的治疗效率,而不需要对其进行修饰。 这项技术利用了免疫系统不断从血液中清除旧的、“过期的”红细胞的事实——人体每天约有1%的红细胞。“我们假设,如果我们稍微加强这个自然过程,我们可以欺骗免疫系统。当它开始忙于清除红血球时,人们对清除治疗性纳米颗粒的关注较少。重要的是,我们想以最温和的方式转移免疫系统的注意力,最理想的是通过人体固有的机制,而不是通过人工物质。” 研究小组发现了一种优雅的解决方案,即向小鼠注射红血球特异性抗体。这些分子构成了哺乳动物免疫系统的基础。他们识别出需要从身体中去除的实体,在这里是红细胞。 这一假设被证明是正确的,而且小剂量的抗体——每公斤体重1.25毫克——被证明非常有效,能将纳米颗粒的血液循环延长几十倍。这种权衡是非常温和的,小鼠的红细胞水平仅下降了5%,比贫血的水平少了两倍。 研究人员发现,他们的方法被称为单核吞噬细胞系统的“细胞封锁”,适用于所有的纳米颗粒。它延长了微小的量子点测量循环时间只有8纳米,中等规模的100纳米粒子,和大型微米大小的,以及最先进的nanoagents批准使用在人类身上:一种“隐形”脂质体,伪装自己下一个高度惰性聚乙二醇涂层来躲避免疫系统。 与此同时,无论是小剂量还是在脓毒症的情况下,细胞阻滞都不会损害人体抵御血液中细菌(天然微粒)的能力。 这项新技术使纳米颗粒的广泛应用成为可能。在一组小鼠实验中,研究人员在所谓的纳米制剂主动输送到细胞方面取得了显著进展。 它包括配备特殊分子的纳米颗粒来识别靶细胞。一个例子就是使用识别T细胞的CD4受体的抗体。给这些细胞的药物输送将有助于治疗自身免疫性疾病和其他疾病。 在小鼠体内诱导细胞阻滞使纳米颗粒的循环时间从通常的3-5分钟增加到1小时以上。在没有细胞阻滞的情况下,清除速度过快,无法与靶细胞结合,但在细胞阻滞后,药物表现出异常高的靶向效率,与体外达到的水平相当。 该实验凸显了这项新技术的巨大潜力,不仅可以增强纳米制剂的性能,还可以使之前在体内完全低效的纳米制剂成为可能。 团队继续演示他们的癌症治疗技术的适用性,与cytoblockade使23倍更有效的磁纳米粒子的引导交付肿瘤(图1)。这种交付技术利用磁场来指导,集中注意力,并保留磁代理在肿瘤减少系统性毒性。这种传递只适用于纳米颗粒,而不适用于分子。 该研究报告了一种有效的治疗黑色素瘤的方法,即使用载磁铁矿的脂质体和化疗药物阿霉素,如果不使用红细胞抗体则完全无效。研究表明,改善磁传递对五种不同性质的肿瘤,包括黑色素瘤和乳腺癌。 他说:“我们观察到,对于我们所针对的每种癌症,纳米剂的输送都得到了改善。特别重要的是,这种方法在小鼠体内的人类肿瘤细胞上起作用,”研究合著者伊万·泽莱普金评论道,他是RAS生物有机化学研究所和MIPT的初级研究员。 值得注意的是,这项新技术使一种已获批准用于人体的商业脂质体制剂的治疗得到改进。这意味着细胞阻滞不仅打开了新的治疗机会,而且加强了现有的治疗机会。 作者指出,纳米颗粒性能的增强与血液循环时间的延长密切相关。这种相关性可以通过研究小组开发的一种高灵敏度的磁粒子定量方法来建立。它能够以一种无创的方式检测血液中颗粒消除的动力学——也就是说,不抽血。 这种方法不仅能让我们实时测量血液中的颗粒含量。它使整个研究中,因为这将不可能测量如此大量的纳米粒子动能概要文件使用任何其他现有方法在一个合理的时间内,”切赫尼基丁说,他是这项研究的合作者之一Biophotonics实验室主管和RAS的普通物理研究所。 这项新开发的技术在转化为临床应用方面尤其有前景,因为抗d抗体与rhd阳性的红细胞结合,长期以来被批准用于治疗免疫血小板减少症和预防恒河猴疾病。因此,利用已获批准的药物,对人类新技术的评估可以在不久的将来开始。 毫无疑问,纳米医学与现有的抗d或改进的下一代抗红细胞抗体的联合作用应该在严格的临床试验中进行检验。然而,我们对这项技术及其在癌症等需要靶向药物治疗的严重疾病中的应用感到非常乐观。” “既然这项历时七年的复杂研究已经发表,我们将尽一切努力将其转化为临床实践。因此,我们正在寻找有兴趣加入这个团队的合作者和积极的同事。” 自cytoblockade技术是通用的兼容nanoagents,不需要修改,它有可能成为比PEGylation大大更有效率,这是发达国家在70年代以来产生了数十亿产业“长期循环”的药物,与数十名临床批准的药物。 这组作者认为,这项拟议的技术可能为最先进的纳米制剂在体内的使用打开大门,主要关注的是功能性而不是隐形特性。 根据材料科学中最先进的理念制备的新型生物医学纳米材料,可以立即被引入体内的生命科学研究,然后迅速完善到临床应用。