《中国科学院烟台海岸带研究所在河口食物网中新型全氟聚醚羧酸的研究获得新进展》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2022-06-06
  • 全氟及多氟烷基化合物(PFAS)由于具有疏水疏油性、高表面活性、化学和热稳定性等特殊的化学性质被广泛应用于工业生产和生活中。某些PFAS具有环境持久性、生物累积性和毒性以及长距离迁移潜力,而被列入持久性有机污染物(POPs)清单中,其生产和使用受到管控,因而新型替代品不断涌现。全氟聚醚羧酸(PFECAs)是一类典型的新型替代品,人们通过向PFAS的碳链骨架中添加一个或多个醚氧基而认为其在环境中更容易降解,希冀其对环境的持久损害更小。但目前对于这些新型替代品在环境中的行为与毒性效应缺乏研究与认识。小清河是我国PFAS污染比较严重的区域,受氟工业园区的影响,小清河和莱州湾水体中的PFAS浓度在国内处于较高水平。然而目前对于新型的PFECAs在河口区污染状况及风险尚不清楚,也缺乏其生物富集和食物链传递规律的研究。

    该研究在受工业污染较重的小清河口采集了水、沉积物和浮游生物、底栖动物和游泳动物在内的食物网样品,分析了新型及传统全氟化合物的生物富集特征及食物链传递规律,评估了当地居民摄入鱼、虾、螺、贝等主要海产品的健康风险。小清河河口水体和沉积物中以全氟辛酸(PFOA)、全氟2-甲氧基乙酸(PFMOAA)、全氟-3,5-二氧杂己酸(PFO2HxA)和六氟环氧丙烷三聚体羧酸(HFPO-TrA)为主要污染物。生物体内∑PFAS的浓度排序为:腹足类 > 双壳类 > 甲壳类 > 鱼类 > 浮游生物,这可能与生物的食性、生物累积能力、栖息环境和生理状态的差异以及体内代谢转化有关。底栖无脊椎动物主要富集短链PFAS(PFOA、PFMOAA和PFBA),而鱼体内以长链PFAS(HFPO-TrA、 HFPO-TeA、PFO5DoA和PFOS)为主。

    通过分析PFAS的生物富集因子,发现对于PFECAs(从PFMOAA到PFO4DA),随着碳链长度和醚氧基团的增加,log BAF值呈下降趋势,然后到PFO5DoA又呈上升趋势。在只含有一个醚氧基的PFECAs同系物(PFMOAA、PF4OPeA和PF5OHxA)中也发现了类似的结果:log BAF值随碳链长度的增加呈现先减小后升高的趋势。对于C4-C7的全氟羧酸(PFCAs),生物体的log BAF值随着碳链长度的增加而降低,然而对于C8-C12 PFCAs则随着碳链长度的增加呈线性增加趋势,在PFDoDA达到峰值。这一发现表明全氟烷基链长度和官能团可能会影响PFECAs的生物累积。

    一些无脊椎动物因其广泛的分布和较高的生物富集能力常被用作反映水环境污染状况的指示生物。研究发现小清河河口中肉食性的扁玉螺体内含有最高浓度的PFMOAA。考虑到扁玉螺在中国沿海地区分布广泛,容易被捕获以及对PFMOAA特异性的生物富集能力,本研究提出了可以用扁玉螺作为指示生物来反映水环境中PFMOAA的污染水平的观点。

    对PFAS的在河口食物网不同营养级生物间的传递规律研究表明:长链PFECAs(HFPO-TrA、HFPO-TeA、PFO5DoA)在生物体中的浓度随着营养级的增加而呈线性增加的趋势,表现出生物放大特性;对于一些短链物质如PFMOAA、PFO2HxA和PFBA,在营养级相对较高的鱼类中浓度较低,但在营养级较低的软体动物中却浓度比较高,在生物体中的浓度随着营养级的增加而降低,表现出生物稀释效应。

    对于当地沿海居民,水产品是重要的蛋白质来源,膳食摄入是人体暴露PFAS的主要途径。PFOA的人均日摄入量估算值(EDI)比欧洲食品安全局(EFSA)2018年建议的ADI值高出近20倍。此外,对于四种PFAS(PFOA, PFNA, PFHxS和PFOS)的周摄入量估计值(EWI)45.0 ng/kg bw/w是EFSA的可接受周摄入量(TWI)(4.4 ng/kg bw/w)的10倍以上。因此表明小清河河口这四种PFAS可能对当地居民构成了一定的健康风险,而且PFMOAA的较高EDI值也值得关注。

    研究表明,小清河河口生态系统中PFAS普遍检出。已被列入POPs清单中PFOA仍然是最主要的污染物,但与此同时PFOA的新型替代品PFECAs也被广泛检出。风险分析表明PFOA等全氟羧酸已经对当地居民通过膳食摄入带来了一定的健康风险。尤其是短链的PFMOAA,能在扁玉螺中特异性富集,成为底栖无脊椎动物中的最主要的PFAS,其生态毒理效应和环境风险更应该引起科研机构、工业界和管理部门的高度重视。考虑到PFECAs的环境分布和毒理数据十分匮乏,未来将通过进一步的野外调查分析,结合实验室暴露模拟数据,明确新型PFECAs对水生生物的生态风险和对居民的健康风险,以降低化学品对生态系统和暴露人群的健康风险。

    相关研究论文发表在Environmental Science & Technology上 (DOI: 10.1021/acs.est.1c00965),中国科学院烟台海岸带研究所博士生李亚楠为论文的第一作者,上海交通大学环境学院潘奕陶副教授和中国科学院烟台海岸带研究所唐建辉研究员为共同通讯作者。本研究受国家自然科学基金委-山东省联合基金(U1806207)、国家自然科学基金委面上基金(41773138和41977326)以及中国科学院烟台海岸带研究所自主部署项目(Y855011023 and Y855011024)资助。

    论文链接:

    Li Y N, Yao J Z, Zhang J, Pan Y T, Dai JY, Ji CL, and Tang J H. First report on the bioaccumulation and trophic transfer of perfluoroalkyl ether carboxylic acids in estuarine food web. Environmental Science & Technology, 2022, 56, 10, 6046-6055.

    https://doi.org/10.1021/acs.est.1c00965

  • 原文来源:http://www.yic.cas.cn/ky/kydt/202206/t20220602_6456998.html
相关报告
  • 《中国科学院烟台海岸带研究所在渤海河流入海污染物输运机制研究方面取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:熊萍
    • 发布时间:2024-12-24
    • 河口海岸区域水动力特征复杂且变化多样,污染物输运动力学对于这些区域的环境评价和管理具有重要意义。鉴于污染物潜在的生物化学影响,结合河口海岸动力学的特点,深入研究污染物的输运过程及驱动机制,能够揭示污染物在复杂环境中的时空分布特征,为区域环境管理和政策制定提供科学依据。 多溴联苯醚广泛用于塑料、电子产品和建筑材料,具有持久性、有毒性和生物蓄积性,在环渤海区域主要通过河流入海。中国科学院烟台海岸带研究所康欣奕助理研究员通过渤海三维水动力模型,结合拉格朗日粒子追踪方法对河流入海的溴系阻燃剂在渤海的输运特征及其动力机制进行模拟研究。 研究发现,河流入海的溴系阻燃剂在渤海的传输轨迹时空变化显著。黄河口释放的溴系阻燃剂,受南风和强河流径流影响, 7月份可输运至中央盆地;其他月份则主要集中在莱州湾西部。滦河口释放的溴系阻燃剂也可输运至中央盆地,8月时可能进入渤海湾。海河和辽河口释放的溴系阻燃剂则局限于当地海区,影响范围较小。 动量平衡分析表明,风引起的埃克曼输运加强了黄河和滦河入海口区域近海与外海之间的联系,将河流物质从海岸区域向远处扩散;而渤海湾和辽东湾区域的水平平流和粘性力主导作用超过了埃克曼输运,导致其近海与外海联系减弱,溴系阻燃剂则被局限于当地海区。 相关研究成果以“Riverine substance transport dynamics in a semi-enclosed inland sea”为题,发表在期刊Estuarine,Coastal and Shelf Science,康欣奕助理研究员为本文第一兼通讯作者。该研究工作得到了中国科学院烟台海岸带研究所前沿部署项目(Y855011022)以及烟台市“双百人才计划”(E1390309)的支持。 相关论文信息 Kang,X.,& Xia,M. (2025). Riverine substance transport dynamics in a semi-enclosed inland sea. Estuarine,Coastal and Shelf Science,313,109074. https://doi.org/10.1016/j.ecss.2024.109074
  • 《中国科学院烟台海岸带研究所在渤海中部季节性低氧发生机制研究方面取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:熊萍
    • 发布时间:2024-11-26
    • 溶解氧(DO)对大多数海洋生物的生存至关重要,不同的水生生物需要特定的DO浓度来维持其生命活动。当DO值降至3-4 mg/L时,许多海洋生物受到显著影响;当DO值< 3 mg/L时,部分鱼类可能死亡,严重影响底栖生物的生长和生存;当DO值< 2 mg/L时,大多数生物要么死亡,要么迁移至更适宜居住的环境。已有研究表明,夏季渤海中部也有季节性低氧事件发生,但是目前对于河口海湾低氧事件的物理生物地球化学驱动机制的系统认识不足。近日,中国科学院烟台海岸带研究所过杰研究员课题组基于渤海中部2022年春、夏两季的调查数据(5月28日至6月2日和8月29日至9月4日),探讨了2022年渤海中部夏季低氧的原因及机制。 结果发现,2022年夏季渤海南部冷水区出现低氧带(DO值< 4 mg/L),该带主要分布在深水区(22.7 ~ 30.5 m),DO最低值为2.92 mg/L。主要发生机制为:首先,夏季温度升高导致海水层化,直接阻碍了表底层DO交换;渤海夏季水动力弱,风速低,受黄河调流调沙的影响,为渤海南部冷水区发生低氧事件提供了物理基础。其次,2022年春季渤海中部的轻度富营养化提供了养分基础,导致夏季浮游植物密度增大,其生长和消衰过程消耗了更多的溶解氧;加之夏季水温升高,加速了海底有机质的矿化和分解,各种耗氧活动加剧了低氧事件形成。 综合来看,水体层化的物理机制是主导2022年渤海中部底层水体发生低氧的主要原因。浮游植物自身密度的增加、生长及其消衰过程,加之温度上升所促进的有机质降解和矿化等耗氧过程的生化机制增加了低氧事件发生的严重程度。该研究为深入探讨典型半封闭海湾频繁人类活动对海洋环境的影响提供了科学依据,也为渤海低氧的研究提供实证支持。 相关研究成果以“Investigation of the causes and mechanisms of hypoxia in the central Bohai Sea in the summer of 2022”为题,发表在Marine Pollution Bulletin期刊,过杰为本文通讯作者。该研究工作得到了国家自然科学基金(No. 24 U2106211 and No. 42076197)、“蓝海101”NORC2023-01航次(No. 42249901)支持。 论文链接:https://doi.org/10.1016/j.marpolbul.2024.116710